Biased VH Gene Usage in Early Lineage Human B Cells: Evidence for Preferential Ig Gene Rearrangement in the Absence of Selection
Certain VH genes are predominantly expressed in mature B cells. We hypothesized that several, mutually nonexclusive VH-dependent mechanisms operating at distinct stages during B cell development may be responsible for overrepresentation of these VH genes. In the present study, we have assessed wheth...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1999-09, Vol.163 (5), p.2732-2740 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Certain VH genes are predominantly expressed in mature B cells. We hypothesized that several, mutually nonexclusive VH-dependent mechanisms operating at distinct stages during B cell development may be responsible for overrepresentation of these VH genes. In the present study, we have assessed whether one of the mechanisms involves preferential rearrangement at the pro-B cell stage. The frequency of individual VH4 and VH3 genes in rearrangement libraries from FACS-purified human CD34+/CD19+ pro-B and CD34-/CD19+ pre-B cells was assessed. The in-frame and out-of-frame rearrangements from both cell populations were analyzed using a high resolution PAGE system. The frequencies of individual VH gene segments among out-of-frame rearrangements from pro-B cells were determined, because these frequencies should reflect only processes before the translation of the mu-heavy chain and should not be biased by selection mechanisms. Our results demonstrate that, at the pro-B cell stage, the V4-34, V4-39, and V4-59 gene segments are the most frequently rearranged VH4 family genes, and the V3-23 and V3-30 gene segments are the most frequently rearranged VH3 family genes. This finding suggests that the predominant expression of these VH genes in peripheral mature B cells is determined to a significant degree by their preferential rearrangement during V-DJ recombination. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.163.5.2732 |