Exhaustive docking of molecular fragments with electrostatic solvation
A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the bind...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 37 |
creator | Majeux, Nicolas Scarsi, Marco Apostolakis, Joannis Ehrhardt, Claus Caflisch, Amedeo |
description | A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1097-0134(19991001)37:1<88::AID-PROT9>3.0.CO;2-O |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69976268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69976268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</originalsourceid><addsrcrecordid>eNqFkFtv1DAQRi0EokvLX0B5Qu1DlvEtjhdUqYS2LN0SBIVKvIy8jtOGJpsSJ738e7ykVJVAQrJka-bzmdEhZJfClAKwV9tf5tl8h4JWMVAutqnWOjToDlcz-iZNZ7O9-bv40-f8RO_yKUyz_DWL80dkcv_lMZlAmqqYy1RukGfe_wCARPPkKdmgICSVkk_Iwf7NuRl8X125qGjtRbU6i9oyatra2aE2XVR25qxxq95H11V_HrlQ77vW96avbOTb-io82tUWeVKa2rvnd_cm-Xqwf5K9jxf54TzbW8RWgNDxMuWFMJYaMEIuE0qlksrQEqhwhaSUla5kSpZCK1tYYCAUS5YlC0cIsIxvkpcj97Jrfw7O99hU3rq6NivXDh4TrVXCkjQEv41BG5b1nSvxsqsa090iBVwbRlwbxrUuXOvCP4aRK6SYpojBMP42jBwBsxwZ5gH84m6DYdm44gF2VBoCp2Pguqrd7V9j_zf1X0PHQiDHI7nyvbu5J5vuAhPFlcTTj4fIFsdy8eHoO77lvwCRxabU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69976268</pqid></control><display><type>article</type><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</creator><creatorcontrib>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</creatorcontrib><description>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/(SICI)1097-0134(19991001)37:1<88::AID-PROT9>3.0.CO;2-O</identifier><identifier>PMID: 10451553</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>AIDS/HIV ; combinatorial ligand design ; Computer Simulation ; docking ; Drug Design ; electrostatic solvation ; HIV Protease - chemistry ; HIV Protease Inhibitors - pharmacology ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Poisson Distribution ; Protein Binding ; SEED ; Solvents - chemistry ; Static Electricity ; thrombin ; Thrombin - chemistry</subject><ispartof>Proteins, structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>Copyright 1999 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0134%2819991001%2937%3A1%3C88%3A%3AAID-PROT9%3E3.0.CO%3B2-O$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0134%2819991001%2937%3A1%3C88%3A%3AAID-PROT9%3E3.0.CO%3B2-O$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10451553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Apostolakis, Joannis</creatorcontrib><creatorcontrib>Ehrhardt, Claus</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</description><subject>AIDS/HIV</subject><subject>combinatorial ligand design</subject><subject>Computer Simulation</subject><subject>docking</subject><subject>Drug Design</subject><subject>electrostatic solvation</subject><subject>HIV Protease - chemistry</subject><subject>HIV Protease Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Poisson Distribution</subject><subject>Protein Binding</subject><subject>SEED</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>thrombin</subject><subject>Thrombin - chemistry</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtv1DAQRi0EokvLX0B5Qu1DlvEtjhdUqYS2LN0SBIVKvIy8jtOGJpsSJ738e7ykVJVAQrJka-bzmdEhZJfClAKwV9tf5tl8h4JWMVAutqnWOjToDlcz-iZNZ7O9-bv40-f8RO_yKUyz_DWL80dkcv_lMZlAmqqYy1RukGfe_wCARPPkKdmgICSVkk_Iwf7NuRl8X125qGjtRbU6i9oyatra2aE2XVR25qxxq95H11V_HrlQ77vW96avbOTb-io82tUWeVKa2rvnd_cm-Xqwf5K9jxf54TzbW8RWgNDxMuWFMJYaMEIuE0qlksrQEqhwhaSUla5kSpZCK1tYYCAUS5YlC0cIsIxvkpcj97Jrfw7O99hU3rq6NivXDh4TrVXCkjQEv41BG5b1nSvxsqsa090iBVwbRlwbxrUuXOvCP4aRK6SYpojBMP42jBwBsxwZ5gH84m6DYdm44gF2VBoCp2Pguqrd7V9j_zf1X0PHQiDHI7nyvbu5J5vuAhPFlcTTj4fIFsdy8eHoO77lvwCRxabU</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Majeux, Nicolas</creator><creator>Scarsi, Marco</creator><creator>Apostolakis, Joannis</creator><creator>Ehrhardt, Claus</creator><creator>Caflisch, Amedeo</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><author>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>AIDS/HIV</topic><topic>combinatorial ligand design</topic><topic>Computer Simulation</topic><topic>docking</topic><topic>Drug Design</topic><topic>electrostatic solvation</topic><topic>HIV Protease - chemistry</topic><topic>HIV Protease Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Poisson Distribution</topic><topic>Protein Binding</topic><topic>SEED</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>thrombin</topic><topic>Thrombin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Apostolakis, Joannis</creatorcontrib><creatorcontrib>Ehrhardt, Claus</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majeux, Nicolas</au><au>Scarsi, Marco</au><au>Apostolakis, Joannis</au><au>Ehrhardt, Claus</au><au>Caflisch, Amedeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exhaustive docking of molecular fragments with electrostatic solvation</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>88</spage><epage>105</epage><pages>88-105</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10451553</pmid><doi>10.1002/(SICI)1097-0134(19991001)37:1<88::AID-PROT9>3.0.CO;2-O</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_69976268 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | AIDS/HIV combinatorial ligand design Computer Simulation docking Drug Design electrostatic solvation HIV Protease - chemistry HIV Protease Inhibitors - pharmacology Humans Hydrogen Bonding Ligands Models, Molecular Poisson Distribution Protein Binding SEED Solvents - chemistry Static Electricity thrombin Thrombin - chemistry |
title | Exhaustive docking of molecular fragments with electrostatic solvation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exhaustive%20docking%20of%20molecular%20fragments%20with%20electrostatic%20solvation&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Majeux,%20Nicolas&rft.date=1999-10-01&rft.volume=37&rft.issue=1&rft.spage=88&rft.epage=105&rft.pages=88-105&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/(SICI)1097-0134(19991001)37:1%3C88::AID-PROT9%3E3.0.CO;2-O&rft_dat=%3Cproquest_cross%3E69976268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69976268&rft_id=info:pmid/10451553&rfr_iscdi=true |