Exhaustive docking of molecular fragments with electrostatic solvation

A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the bind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105
Hauptverfasser: Majeux, Nicolas, Scarsi, Marco, Apostolakis, Joannis, Ehrhardt, Claus, Caflisch, Amedeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 88
container_title Proteins, structure, function, and bioinformatics
container_volume 37
creator Majeux, Nicolas
Scarsi, Marco
Apostolakis, Joannis
Ehrhardt, Claus
Caflisch, Amedeo
description A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1097-0134(19991001)37:1<88::AID-PROT9>3.0.CO;2-O
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69976268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69976268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</originalsourceid><addsrcrecordid>eNqFkFtv1DAQRi0EokvLX0B5Qu1DlvEtjhdUqYS2LN0SBIVKvIy8jtOGJpsSJ738e7ykVJVAQrJka-bzmdEhZJfClAKwV9tf5tl8h4JWMVAutqnWOjToDlcz-iZNZ7O9-bv40-f8RO_yKUyz_DWL80dkcv_lMZlAmqqYy1RukGfe_wCARPPkKdmgICSVkk_Iwf7NuRl8X125qGjtRbU6i9oyatra2aE2XVR25qxxq95H11V_HrlQ77vW96avbOTb-io82tUWeVKa2rvnd_cm-Xqwf5K9jxf54TzbW8RWgNDxMuWFMJYaMEIuE0qlksrQEqhwhaSUla5kSpZCK1tYYCAUS5YlC0cIsIxvkpcj97Jrfw7O99hU3rq6NivXDh4TrVXCkjQEv41BG5b1nSvxsqsa090iBVwbRlwbxrUuXOvCP4aRK6SYpojBMP42jBwBsxwZ5gH84m6DYdm44gF2VBoCp2Pguqrd7V9j_zf1X0PHQiDHI7nyvbu5J5vuAhPFlcTTj4fIFsdy8eHoO77lvwCRxabU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69976268</pqid></control><display><type>article</type><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</creator><creatorcontrib>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</creatorcontrib><description>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/(SICI)1097-0134(19991001)37:1&lt;88::AID-PROT9&gt;3.0.CO;2-O</identifier><identifier>PMID: 10451553</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>AIDS/HIV ; combinatorial ligand design ; Computer Simulation ; docking ; Drug Design ; electrostatic solvation ; HIV Protease - chemistry ; HIV Protease Inhibitors - pharmacology ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Poisson Distribution ; Protein Binding ; SEED ; Solvents - chemistry ; Static Electricity ; thrombin ; Thrombin - chemistry</subject><ispartof>Proteins, structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>Copyright 1999 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0134%2819991001%2937%3A1%3C88%3A%3AAID-PROT9%3E3.0.CO%3B2-O$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0134%2819991001%2937%3A1%3C88%3A%3AAID-PROT9%3E3.0.CO%3B2-O$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10451553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Apostolakis, Joannis</creatorcontrib><creatorcontrib>Ehrhardt, Claus</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</description><subject>AIDS/HIV</subject><subject>combinatorial ligand design</subject><subject>Computer Simulation</subject><subject>docking</subject><subject>Drug Design</subject><subject>electrostatic solvation</subject><subject>HIV Protease - chemistry</subject><subject>HIV Protease Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Poisson Distribution</subject><subject>Protein Binding</subject><subject>SEED</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>thrombin</subject><subject>Thrombin - chemistry</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtv1DAQRi0EokvLX0B5Qu1DlvEtjhdUqYS2LN0SBIVKvIy8jtOGJpsSJ738e7ykVJVAQrJka-bzmdEhZJfClAKwV9tf5tl8h4JWMVAutqnWOjToDlcz-iZNZ7O9-bv40-f8RO_yKUyz_DWL80dkcv_lMZlAmqqYy1RukGfe_wCARPPkKdmgICSVkk_Iwf7NuRl8X125qGjtRbU6i9oyatra2aE2XVR25qxxq95H11V_HrlQ77vW96avbOTb-io82tUWeVKa2rvnd_cm-Xqwf5K9jxf54TzbW8RWgNDxMuWFMJYaMEIuE0qlksrQEqhwhaSUla5kSpZCK1tYYCAUS5YlC0cIsIxvkpcj97Jrfw7O99hU3rq6NivXDh4TrVXCkjQEv41BG5b1nSvxsqsa090iBVwbRlwbxrUuXOvCP4aRK6SYpojBMP42jBwBsxwZ5gH84m6DYdm44gF2VBoCp2Pguqrd7V9j_zf1X0PHQiDHI7nyvbu5J5vuAhPFlcTTj4fIFsdy8eHoO77lvwCRxabU</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Majeux, Nicolas</creator><creator>Scarsi, Marco</creator><creator>Apostolakis, Joannis</creator><creator>Ehrhardt, Claus</creator><creator>Caflisch, Amedeo</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>Exhaustive docking of molecular fragments with electrostatic solvation</title><author>Majeux, Nicolas ; Scarsi, Marco ; Apostolakis, Joannis ; Ehrhardt, Claus ; Caflisch, Amedeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4049-b83d4ac1a0a45b6115757a1f014ed5112fef275f497cdc0204726bf2bf2440c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>AIDS/HIV</topic><topic>combinatorial ligand design</topic><topic>Computer Simulation</topic><topic>docking</topic><topic>Drug Design</topic><topic>electrostatic solvation</topic><topic>HIV Protease - chemistry</topic><topic>HIV Protease Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Poisson Distribution</topic><topic>Protein Binding</topic><topic>SEED</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>thrombin</topic><topic>Thrombin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Apostolakis, Joannis</creatorcontrib><creatorcontrib>Ehrhardt, Claus</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majeux, Nicolas</au><au>Scarsi, Marco</au><au>Apostolakis, Joannis</au><au>Ehrhardt, Claus</au><au>Caflisch, Amedeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exhaustive docking of molecular fragments with electrostatic solvation</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>88</spage><epage>105</epage><pages>88-105</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A new method is presented for docking molecular fragments to a rigid protein with evaluation of the binding energy. Polar fragments are docked with at least one hydrogen bond with the protein while apolar fragments are positioned in the hydrophobic pockets. The electrostatic contribution to the binding energy, which consists of screened intermolecular energy and protein and fragment desolvation terms, is evaluated efficiently by a numerical approach based on the continuum dielectric approximation. The latter is also used to predetermine the hydrophobic pockets of the protein by rolling a low dielectric sphere over the protein surface and calculating the electrostatic desolvation of the protein and van der Waals interaction energy. The method was implemented in the program SEED (solvation energy for exhaustive docking). The SEED continuum electrostatic approach has been successfully validated by a comparison with finite difference solutions of the Poisson equation for more than 2,500 complexes of small molecules with thrombin and the monomer of HIV‐1 aspartic proteinase. The fragments docked by SEED in the active site of thrombin reproduce the structural features of the interaction patterns between known inhibitors and thrombin. Moreover, the combinatorial connection of these fragments yields a number of compounds that are very similar to potent inhibitors of thrombin. Proteins 1999;37:88–105. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10451553</pmid><doi>10.1002/(SICI)1097-0134(19991001)37:1&lt;88::AID-PROT9&gt;3.0.CO;2-O</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 1999-10, Vol.37 (1), p.88-105
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_69976268
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects AIDS/HIV
combinatorial ligand design
Computer Simulation
docking
Drug Design
electrostatic solvation
HIV Protease - chemistry
HIV Protease Inhibitors - pharmacology
Humans
Hydrogen Bonding
Ligands
Models, Molecular
Poisson Distribution
Protein Binding
SEED
Solvents - chemistry
Static Electricity
thrombin
Thrombin - chemistry
title Exhaustive docking of molecular fragments with electrostatic solvation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exhaustive%20docking%20of%20molecular%20fragments%20with%20electrostatic%20solvation&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Majeux,%20Nicolas&rft.date=1999-10-01&rft.volume=37&rft.issue=1&rft.spage=88&rft.epage=105&rft.pages=88-105&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/(SICI)1097-0134(19991001)37:1%3C88::AID-PROT9%3E3.0.CO;2-O&rft_dat=%3Cproquest_cross%3E69976268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69976268&rft_id=info:pmid/10451553&rfr_iscdi=true