Prediction of antisense oligonucleotide binding affinity to a structured RNA target
Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 1999-10, Vol.65 (1), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Biotechnology and bioengineering |
container_volume | 65 |
creator | Walton, S. Patrick Stephanopoulos, Gregory N. Yarmush, Martin L. Roth, Charles M. |
description | Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999. |
doi_str_mv | 10.1002/(SICI)1097-0290(19991005)65:1<1::AID-BIT1>3.0.CO;2-F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69955308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17406751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYt3gL6BcILRdpPjbcZmQukC3itEiVsTlkZM4lUeajNgR9N_j0LIhgVT5wjr268fHfqLoHKMxRoi8Pr2ZZ_MzjJRMEFHoFCulwgY_E3yCz_FkMp2_Sy7mK_yWjtE4W74hyexRNLo_8DgaIYREQrkiR9Gxc7ehlKkQT6MjjBhDQvBRdPOpM6UtvG2buK1i3XjrTONM3NZ23TZ9UZvW29LEuW1K26xjXVW2sX4b-zbWsfNdX_g-MOLPi2nsdbc2_ln0pNK1M8_380n0ZfZ-lV0l18vLeTa9TgqmEE5yiYkgKmdMsoojXCIqVKFkObwyp1prhnJSCCy4JGE510wwpRFLq5KnxNCT6NWOe9e133vjPGysK0xd68a0vQOhFOcUpQeDBDNKUsIPBrEM3yY5DsHVLlh0rXOdqeCusxvdbQEjGPQBDPpgsAGDDfijDwQHHAYEfTDoAwoIsiUQmAXsi_39fb4x5V_Qna8QeLkPaFfouup0U1j3kFNUkFQ-tPfD1mb7T28HWvtPZ7_rgE12WOu8-XmP1d03EJJKDl8Xl4BFtmCLjx_giv4CYfnOvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17406751</pqid></control><display><type>article</type><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</creator><creatorcontrib>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</creatorcontrib><description>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/(SICI)1097-0290(19991005)65:1<1::AID-BIT1>3.0.CO;2-F</identifier><identifier>PMID: 10440665</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>affinity ; Algorithms ; Animals ; antisense ; Base Sequence ; Binding energy ; Bioassay ; Biological and medical sciences ; Biotechnology ; Chemical bonds ; Cost effectiveness ; Engineering research ; Fundamental and applied biological sciences. Psychology ; Globins - genetics ; Health. Pharmaceutical industry ; hybridization ; In Vitro Techniques ; Industrial applications and implications. Economical aspects ; Mathematical models ; Medical applications ; Mice ; Miscellaneous ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; oligodeoxyribonucleotides ; Oligodeoxyribonucleotides, Antisense - chemistry ; Oligodeoxyribonucleotides, Antisense - genetics ; Oligodeoxyribonucleotides, Antisense - metabolism ; oligonucleotides ; Rabbits ; RNA ; RNA folding ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Thermal cycling ; Thermodynamics ; tumor necrosis factor-^a ; Tumor Necrosis Factor-alpha - genetics</subject><ispartof>Biotechnology and bioengineering, 1999-10, Vol.65 (1), p.1-9</ispartof><rights>Copyright © 1999 John Wiley & Sons, Inc.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1999 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0290%2819991005%2965%3A1%3C1%3A%3AAID-BIT1%3E3.0.CO%3B2-F$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0290%2819991005%2965%3A1%3C1%3A%3AAID-BIT1%3E3.0.CO%3B2-F$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1936287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10440665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, S. Patrick</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory N.</creatorcontrib><creatorcontrib>Yarmush, Martin L.</creatorcontrib><creatorcontrib>Roth, Charles M.</creatorcontrib><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</description><subject>affinity</subject><subject>Algorithms</subject><subject>Animals</subject><subject>antisense</subject><subject>Base Sequence</subject><subject>Binding energy</subject><subject>Bioassay</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical bonds</subject><subject>Cost effectiveness</subject><subject>Engineering research</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Globins - genetics</subject><subject>Health. Pharmaceutical industry</subject><subject>hybridization</subject><subject>In Vitro Techniques</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Medical applications</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>oligodeoxyribonucleotides</subject><subject>Oligodeoxyribonucleotides, Antisense - chemistry</subject><subject>Oligodeoxyribonucleotides, Antisense - genetics</subject><subject>Oligodeoxyribonucleotides, Antisense - metabolism</subject><subject>oligonucleotides</subject><subject>Rabbits</subject><subject>RNA</subject><subject>RNA folding</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Thermal cycling</subject><subject>Thermodynamics</subject><subject>tumor necrosis factor-^a</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1v0zAUhiMEYt3gL6BcILRdpPjbcZmQukC3itEiVsTlkZM4lUeajNgR9N_j0LIhgVT5wjr268fHfqLoHKMxRoi8Pr2ZZ_MzjJRMEFHoFCulwgY_E3yCz_FkMp2_Sy7mK_yWjtE4W74hyexRNLo_8DgaIYREQrkiR9Gxc7ehlKkQT6MjjBhDQvBRdPOpM6UtvG2buK1i3XjrTONM3NZ23TZ9UZvW29LEuW1K26xjXVW2sX4b-zbWsfNdX_g-MOLPi2nsdbc2_ln0pNK1M8_380n0ZfZ-lV0l18vLeTa9TgqmEE5yiYkgKmdMsoojXCIqVKFkObwyp1prhnJSCCy4JGE510wwpRFLq5KnxNCT6NWOe9e133vjPGysK0xd68a0vQOhFOcUpQeDBDNKUsIPBrEM3yY5DsHVLlh0rXOdqeCusxvdbQEjGPQBDPpgsAGDDfijDwQHHAYEfTDoAwoIsiUQmAXsi_39fb4x5V_Qna8QeLkPaFfouup0U1j3kFNUkFQ-tPfD1mb7T28HWvtPZ7_rgE12WOu8-XmP1d03EJJKDl8Xl4BFtmCLjx_giv4CYfnOvQ</recordid><startdate>19991005</startdate><enddate>19991005</enddate><creator>Walton, S. Patrick</creator><creator>Stephanopoulos, Gregory N.</creator><creator>Yarmush, Martin L.</creator><creator>Roth, Charles M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19991005</creationdate><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><author>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>affinity</topic><topic>Algorithms</topic><topic>Animals</topic><topic>antisense</topic><topic>Base Sequence</topic><topic>Binding energy</topic><topic>Bioassay</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical bonds</topic><topic>Cost effectiveness</topic><topic>Engineering research</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Globins - genetics</topic><topic>Health. Pharmaceutical industry</topic><topic>hybridization</topic><topic>In Vitro Techniques</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Medical applications</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>oligodeoxyribonucleotides</topic><topic>Oligodeoxyribonucleotides, Antisense - chemistry</topic><topic>Oligodeoxyribonucleotides, Antisense - genetics</topic><topic>Oligodeoxyribonucleotides, Antisense - metabolism</topic><topic>oligonucleotides</topic><topic>Rabbits</topic><topic>RNA</topic><topic>RNA folding</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Thermal cycling</topic><topic>Thermodynamics</topic><topic>tumor necrosis factor-^a</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, S. Patrick</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory N.</creatorcontrib><creatorcontrib>Yarmush, Martin L.</creatorcontrib><creatorcontrib>Roth, Charles M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, S. Patrick</au><au>Stephanopoulos, Gregory N.</au><au>Yarmush, Martin L.</au><au>Roth, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>1999-10-05</date><risdate>1999</risdate><volume>65</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10440665</pmid><doi>10.1002/(SICI)1097-0290(19991005)65:1<1::AID-BIT1>3.0.CO;2-F</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 1999-10, Vol.65 (1), p.1-9 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_69955308 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | affinity Algorithms Animals antisense Base Sequence Binding energy Bioassay Biological and medical sciences Biotechnology Chemical bonds Cost effectiveness Engineering research Fundamental and applied biological sciences. Psychology Globins - genetics Health. Pharmaceutical industry hybridization In Vitro Techniques Industrial applications and implications. Economical aspects Mathematical models Medical applications Mice Miscellaneous Models, Molecular Molecular Sequence Data Nucleic Acid Conformation Nucleic Acid Hybridization oligodeoxyribonucleotides Oligodeoxyribonucleotides, Antisense - chemistry Oligodeoxyribonucleotides, Antisense - genetics Oligodeoxyribonucleotides, Antisense - metabolism oligonucleotides Rabbits RNA RNA folding RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism Thermal cycling Thermodynamics tumor necrosis factor-^a Tumor Necrosis Factor-alpha - genetics |
title | Prediction of antisense oligonucleotide binding affinity to a structured RNA target |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20antisense%20oligonucleotide%20binding%20affinity%20to%20a%20structured%20RNA%20target&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Walton,%20S.%20Patrick&rft.date=1999-10-05&rft.volume=65&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/(SICI)1097-0290(19991005)65:1%3C1::AID-BIT1%3E3.0.CO;2-F&rft_dat=%3Cproquest_cross%3E17406751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17406751&rft_id=info:pmid/10440665&rfr_iscdi=true |