Prediction of antisense oligonucleotide binding affinity to a structured RNA target

Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 1999-10, Vol.65 (1), p.1-9
Hauptverfasser: Walton, S. Patrick, Stephanopoulos, Gregory N., Yarmush, Martin L., Roth, Charles M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Biotechnology and bioengineering
container_volume 65
creator Walton, S. Patrick
Stephanopoulos, Gregory N.
Yarmush, Martin L.
Roth, Charles M.
description Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.
doi_str_mv 10.1002/(SICI)1097-0290(19991005)65:1<1::AID-BIT1>3.0.CO;2-F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69955308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17406751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYt3gL6BcILRdpPjbcZmQukC3itEiVsTlkZM4lUeajNgR9N_j0LIhgVT5wjr268fHfqLoHKMxRoi8Pr2ZZ_MzjJRMEFHoFCulwgY_E3yCz_FkMp2_Sy7mK_yWjtE4W74hyexRNLo_8DgaIYREQrkiR9Gxc7ehlKkQT6MjjBhDQvBRdPOpM6UtvG2buK1i3XjrTONM3NZ23TZ9UZvW29LEuW1K26xjXVW2sX4b-zbWsfNdX_g-MOLPi2nsdbc2_ln0pNK1M8_380n0ZfZ-lV0l18vLeTa9TgqmEE5yiYkgKmdMsoojXCIqVKFkObwyp1prhnJSCCy4JGE510wwpRFLq5KnxNCT6NWOe9e133vjPGysK0xd68a0vQOhFOcUpQeDBDNKUsIPBrEM3yY5DsHVLlh0rXOdqeCusxvdbQEjGPQBDPpgsAGDDfijDwQHHAYEfTDoAwoIsiUQmAXsi_39fb4x5V_Qna8QeLkPaFfouup0U1j3kFNUkFQ-tPfD1mb7T28HWvtPZ7_rgE12WOu8-XmP1d03EJJKDl8Xl4BFtmCLjx_giv4CYfnOvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17406751</pqid></control><display><type>article</type><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</creator><creatorcontrib>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</creatorcontrib><description>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/(SICI)1097-0290(19991005)65:1&lt;1::AID-BIT1&gt;3.0.CO;2-F</identifier><identifier>PMID: 10440665</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>affinity ; Algorithms ; Animals ; antisense ; Base Sequence ; Binding energy ; Bioassay ; Biological and medical sciences ; Biotechnology ; Chemical bonds ; Cost effectiveness ; Engineering research ; Fundamental and applied biological sciences. Psychology ; Globins - genetics ; Health. Pharmaceutical industry ; hybridization ; In Vitro Techniques ; Industrial applications and implications. Economical aspects ; Mathematical models ; Medical applications ; Mice ; Miscellaneous ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; oligodeoxyribonucleotides ; Oligodeoxyribonucleotides, Antisense - chemistry ; Oligodeoxyribonucleotides, Antisense - genetics ; Oligodeoxyribonucleotides, Antisense - metabolism ; oligonucleotides ; Rabbits ; RNA ; RNA folding ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Thermal cycling ; Thermodynamics ; tumor necrosis factor-^a ; Tumor Necrosis Factor-alpha - genetics</subject><ispartof>Biotechnology and bioengineering, 1999-10, Vol.65 (1), p.1-9</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Inc.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1999 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0290%2819991005%2965%3A1%3C1%3A%3AAID-BIT1%3E3.0.CO%3B2-F$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0290%2819991005%2965%3A1%3C1%3A%3AAID-BIT1%3E3.0.CO%3B2-F$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1936287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10440665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, S. Patrick</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory N.</creatorcontrib><creatorcontrib>Yarmush, Martin L.</creatorcontrib><creatorcontrib>Roth, Charles M.</creatorcontrib><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</description><subject>affinity</subject><subject>Algorithms</subject><subject>Animals</subject><subject>antisense</subject><subject>Base Sequence</subject><subject>Binding energy</subject><subject>Bioassay</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical bonds</subject><subject>Cost effectiveness</subject><subject>Engineering research</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Globins - genetics</subject><subject>Health. Pharmaceutical industry</subject><subject>hybridization</subject><subject>In Vitro Techniques</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Medical applications</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>oligodeoxyribonucleotides</subject><subject>Oligodeoxyribonucleotides, Antisense - chemistry</subject><subject>Oligodeoxyribonucleotides, Antisense - genetics</subject><subject>Oligodeoxyribonucleotides, Antisense - metabolism</subject><subject>oligonucleotides</subject><subject>Rabbits</subject><subject>RNA</subject><subject>RNA folding</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Thermal cycling</subject><subject>Thermodynamics</subject><subject>tumor necrosis factor-^a</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1v0zAUhiMEYt3gL6BcILRdpPjbcZmQukC3itEiVsTlkZM4lUeajNgR9N_j0LIhgVT5wjr268fHfqLoHKMxRoi8Pr2ZZ_MzjJRMEFHoFCulwgY_E3yCz_FkMp2_Sy7mK_yWjtE4W74hyexRNLo_8DgaIYREQrkiR9Gxc7ehlKkQT6MjjBhDQvBRdPOpM6UtvG2buK1i3XjrTONM3NZ23TZ9UZvW29LEuW1K26xjXVW2sX4b-zbWsfNdX_g-MOLPi2nsdbc2_ln0pNK1M8_380n0ZfZ-lV0l18vLeTa9TgqmEE5yiYkgKmdMsoojXCIqVKFkObwyp1prhnJSCCy4JGE510wwpRFLq5KnxNCT6NWOe9e133vjPGysK0xd68a0vQOhFOcUpQeDBDNKUsIPBrEM3yY5DsHVLlh0rXOdqeCusxvdbQEjGPQBDPpgsAGDDfijDwQHHAYEfTDoAwoIsiUQmAXsi_39fb4x5V_Qna8QeLkPaFfouup0U1j3kFNUkFQ-tPfD1mb7T28HWvtPZ7_rgE12WOu8-XmP1d03EJJKDl8Xl4BFtmCLjx_giv4CYfnOvQ</recordid><startdate>19991005</startdate><enddate>19991005</enddate><creator>Walton, S. Patrick</creator><creator>Stephanopoulos, Gregory N.</creator><creator>Yarmush, Martin L.</creator><creator>Roth, Charles M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19991005</creationdate><title>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</title><author>Walton, S. Patrick ; Stephanopoulos, Gregory N. ; Yarmush, Martin L. ; Roth, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4901-b712629b4474f501d0369c97d1005b3aaa40b2c61657297dba4649a048fd582e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>affinity</topic><topic>Algorithms</topic><topic>Animals</topic><topic>antisense</topic><topic>Base Sequence</topic><topic>Binding energy</topic><topic>Bioassay</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical bonds</topic><topic>Cost effectiveness</topic><topic>Engineering research</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Globins - genetics</topic><topic>Health. Pharmaceutical industry</topic><topic>hybridization</topic><topic>In Vitro Techniques</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Medical applications</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>oligodeoxyribonucleotides</topic><topic>Oligodeoxyribonucleotides, Antisense - chemistry</topic><topic>Oligodeoxyribonucleotides, Antisense - genetics</topic><topic>Oligodeoxyribonucleotides, Antisense - metabolism</topic><topic>oligonucleotides</topic><topic>Rabbits</topic><topic>RNA</topic><topic>RNA folding</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Thermal cycling</topic><topic>Thermodynamics</topic><topic>tumor necrosis factor-^a</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, S. Patrick</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory N.</creatorcontrib><creatorcontrib>Yarmush, Martin L.</creatorcontrib><creatorcontrib>Roth, Charles M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, S. Patrick</au><au>Stephanopoulos, Gregory N.</au><au>Yarmush, Martin L.</au><au>Roth, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of antisense oligonucleotide binding affinity to a structured RNA target</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>1999-10-05</date><risdate>1999</risdate><volume>65</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Antisense oligonucleotides, which act through the pairing of complementary bases to an RNA target sequence, are showing great promise in research and clinical applications. However, the selection of effective antisense oligonucleotides has proven more difficult than initially presumed. We developed a prediction algorithm to identify those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide. The model was used to predict the binding affinity of antisense oligonucleotides complementary to the rabbit β‐globin (RBG) and mouse tumor necrosis factor‐α (TNFα) mRNAs, for which large experimental datasets were available. Of the top ten candidates identified by the algorithm for the RBG mRNA, six were the most strongly binding sequences determined from an experimental assay. The prediction for the TNFα mRNA also identified high affinity sequences with ∼60% accuracy. Computational prediction of antisense efficacy is more cost‐efficient and faster than in vitro or in vivo selection and can potentially speed the development of sequences for both research and clinical applications. © 1999 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 65: 1–9, 1999.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10440665</pmid><doi>10.1002/(SICI)1097-0290(19991005)65:1&lt;1::AID-BIT1&gt;3.0.CO;2-F</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 1999-10, Vol.65 (1), p.1-9
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_69955308
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects affinity
Algorithms
Animals
antisense
Base Sequence
Binding energy
Bioassay
Biological and medical sciences
Biotechnology
Chemical bonds
Cost effectiveness
Engineering research
Fundamental and applied biological sciences. Psychology
Globins - genetics
Health. Pharmaceutical industry
hybridization
In Vitro Techniques
Industrial applications and implications. Economical aspects
Mathematical models
Medical applications
Mice
Miscellaneous
Models, Molecular
Molecular Sequence Data
Nucleic Acid Conformation
Nucleic Acid Hybridization
oligodeoxyribonucleotides
Oligodeoxyribonucleotides, Antisense - chemistry
Oligodeoxyribonucleotides, Antisense - genetics
Oligodeoxyribonucleotides, Antisense - metabolism
oligonucleotides
Rabbits
RNA
RNA folding
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
Thermal cycling
Thermodynamics
tumor necrosis factor-^a
Tumor Necrosis Factor-alpha - genetics
title Prediction of antisense oligonucleotide binding affinity to a structured RNA target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20antisense%20oligonucleotide%20binding%20affinity%20to%20a%20structured%20RNA%20target&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Walton,%20S.%20Patrick&rft.date=1999-10-05&rft.volume=65&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/(SICI)1097-0290(19991005)65:1%3C1::AID-BIT1%3E3.0.CO;2-F&rft_dat=%3Cproquest_cross%3E17406751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17406751&rft_id=info:pmid/10440665&rfr_iscdi=true