Protein synthesizing units in presynaptic and postsynaptic domains of squid neurons
Putative protein synthesizing domains, called plaques, are characterized in the squid giant synapse and axon and in terminals of squid photoreceptor neurons. Plaques are oval-shaped formations of about 1 microm in size, which (1) generate signals that have spectroscopic electron energy loss characte...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 1998-11, Vol.111 ( Pt 21) (21), p.3157-3166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Putative protein synthesizing domains, called plaques, are characterized in the squid giant synapse and axon and in terminals of squid photoreceptor neurons. Plaques are oval-shaped formations of about 1 microm in size, which (1) generate signals that have spectroscopic electron energy loss characteristics of ribosomes, (2) exhibit ribonuclease-sensitive binding of YOYO-1, a fluorescent RNA/DNA dye, and (3) in part hybridize with a poly(dT) oligonucleotide. In the giant synapse plaques are abundant in the postsynaptic area, but are absent in the presynaptic terminal. In the cortical layer of the optic lobes, plaques are localized in the large carrot-shaped presynaptic terminals of photoreceptor neurons, where they are surrounded by synaptic vesicles and mitochondria. Biochemical and autoradiographic data have documented that the protein synthetic activity of squid optic lobe synaptosomes is largely due to the presynaptic terminals of the photoreceptor neurons. The identification of ribosomes and poly(A+)-mRNA in the plaques indicates that these structures are sites of local protein synthesis in synaptic domains. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.111.21.3157 |