Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation
Examination of the subcellular localization of Dishevelled (Dsh) in fertilized Xenopus eggs revealed that Dsh is associated with vesicle-like organelles that are enriched on the prospective dorsal side of the embryo after cortical rotation. Dorsal enrichment of Dsh is blocked by UV irradiation of th...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 1999-07, Vol.146 (2), p.427-437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 2 |
container_start_page | 427 |
container_title | The Journal of cell biology |
container_volume | 146 |
creator | Miller, Jeffrey R. Rowning, Brian A. Larabell, Carolyn A. Yang-Snyder, Julia A. Bates, Rebecca L. Moon, Randall T. |
description | Examination of the subcellular localization of Dishevelled (Dsh) in fertilized Xenopus eggs revealed that Dsh is associated with vesicle-like organelles that are enriched on the prospective dorsal side of the embryo after cortical rotation. Dorsal enrichment of Dsh is blocked by UV irradiation of the vegetal pole, a treatment that inhibits development of dorsal cell fates, linking accumulation of Dsh and specification of dorsal cell fates. Investigation of the dynamics of Dsh localization using Dsh tagged with green fluorescent protein (Dsh-GFP) demonstrated that Dsh-GFP associates with small vesicle-like organelles that are directionally transported along the parallel array of microtubules towards the prospective dorsal side of the embryo during cortical rotation. Perturbing the assembly of the microtubule array with D2 O, a treatment that promotes the random assembly of the array and the dorsalization of embryos, randomizes translocation of Dsh-GFP. Conversely, UV irradiation of the vegetal pole abolishes movement of Dsh-GFP. Finally, we demonstrate that overexpression of Dsh can stabilize β-catenin in Xenopus. These data suggest that the directional translocation of Dsh along microtubules during cortical rotation and its subsequent enrichment on the prospective dorsal side of the embryo play a role in locally activating a maternal Wnt pathway responsible for establishing dorsal cell fates in Xenopus. |
doi_str_mv | 10.1083/jcb.146.2.427 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69930738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1619318</jstor_id><sourcerecordid>1619318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8cbe85358897bf8ace133812b40a9596df77674d111a71f8f11b9914f722f5cf3</originalsourceid><addsrcrecordid>eNqF0UFvFCEYBmBiNHatHr0ZQzx4m5UPZgY4NrurNmliYqrxRhgGsmxmYAVG7R_x90rdRhsvciGBhzcfeRF6DmQNRLA3BzOsoe3XdN1S_gCtoGtJI6AlD9GKEAqN7Gh3hp7kfCCEtLxlj9EZkIqJ7Fbo5y4XPUw-72cbCo4Ol73F25iynprP9SjpCV_88Bn7gL_YEI9Lxrt5SDcx4030wfjRZvzdl_29l3gXkjd_Irc13n6z02RHfL3XBV9mvLVHG8bfINSgVLyp7z7GoouP4Sl65PSU7bO7_Rx9eru73rxvrj68u9xcXDWG9aI0wgxWdKwTQvLBCW0sMCaADi3RspP96DjveTsCgObghAMYpITWcUpdZxw7R69PuccUvy42FzX7bOqkOti4ZNVLyQhn4r8QOKtjyFv46h94iEsK9ROKAie8rr6i5oRMijkn69Qx-VmnGwVE3daqaq2q1qqoqk1V__IudBlmO97Tpx4reHECh1xi-nvfg2Qg2C9CCqfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217077776</pqid></control><display><type>article</type><title>Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Miller, Jeffrey R. ; Rowning, Brian A. ; Larabell, Carolyn A. ; Yang-Snyder, Julia A. ; Bates, Rebecca L. ; Moon, Randall T.</creator><creatorcontrib>Miller, Jeffrey R. ; Rowning, Brian A. ; Larabell, Carolyn A. ; Yang-Snyder, Julia A. ; Bates, Rebecca L. ; Moon, Randall T.</creatorcontrib><description>Examination of the subcellular localization of Dishevelled (Dsh) in fertilized Xenopus eggs revealed that Dsh is associated with vesicle-like organelles that are enriched on the prospective dorsal side of the embryo after cortical rotation. Dorsal enrichment of Dsh is blocked by UV irradiation of the vegetal pole, a treatment that inhibits development of dorsal cell fates, linking accumulation of Dsh and specification of dorsal cell fates. Investigation of the dynamics of Dsh localization using Dsh tagged with green fluorescent protein (Dsh-GFP) demonstrated that Dsh-GFP associates with small vesicle-like organelles that are directionally transported along the parallel array of microtubules towards the prospective dorsal side of the embryo during cortical rotation. Perturbing the assembly of the microtubule array with D2 O, a treatment that promotes the random assembly of the array and the dorsalization of embryos, randomizes translocation of Dsh-GFP. Conversely, UV irradiation of the vegetal pole abolishes movement of Dsh-GFP. Finally, we demonstrate that overexpression of Dsh can stabilize β-catenin in Xenopus. These data suggest that the directional translocation of Dsh along microtubules during cortical rotation and its subsequent enrichment on the prospective dorsal side of the embryo play a role in locally activating a maternal Wnt pathway responsible for establishing dorsal cell fates in Xenopus.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.146.2.427</identifier><identifier>PMID: 10427095</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adaptor Proteins, Signal Transducing ; Animals ; Antibodies ; beta Catenin ; Biological Transport - drug effects ; Biological Transport - radiation effects ; Blastocyst - cytology ; Blastocyst - metabolism ; Body Patterning - drug effects ; Body Patterning - radiation effects ; Cell Differentiation - drug effects ; Cell Differentiation - radiation effects ; Cell Polarity - drug effects ; Cell Polarity - radiation effects ; Cells ; Cellular biology ; Cytoskeletal Proteins - metabolism ; Deuterium Oxide - pharmacology ; Dishevelled Proteins ; Eggs ; Embryo, Nonmammalian - drug effects ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - radiation effects ; Embryogenesis ; Embryonic Development ; Embryos ; Frizzled Receptors ; Frogs ; Microtubules ; Microtubules - drug effects ; Microtubules - metabolism ; Models, Biological ; Natural satellites ; Nocodazole - pharmacology ; Oocytes ; Organelles ; Organelles - drug effects ; Organelles - metabolism ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Proteins ; Rats ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter - genetics ; Receptors, Neurotransmitter - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Rotation ; Trans-Activators ; Ultraviolet Rays ; Xenopus ; Xenopus laevis - embryology ; Xenopus laevis - metabolism ; Xenopus Proteins ; Zygote - cytology ; Zygote - drug effects ; Zygote - metabolism ; Zygote - radiation effects</subject><ispartof>The Journal of cell biology, 1999-07, Vol.146 (2), p.427-437</ispartof><rights>Copyright 1999 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jul 26, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8cbe85358897bf8ace133812b40a9596df77674d111a71f8f11b9914f722f5cf3</citedby><cites>FETCH-LOGICAL-c368t-8cbe85358897bf8ace133812b40a9596df77674d111a71f8f11b9914f722f5cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10427095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Jeffrey R.</creatorcontrib><creatorcontrib>Rowning, Brian A.</creatorcontrib><creatorcontrib>Larabell, Carolyn A.</creatorcontrib><creatorcontrib>Yang-Snyder, Julia A.</creatorcontrib><creatorcontrib>Bates, Rebecca L.</creatorcontrib><creatorcontrib>Moon, Randall T.</creatorcontrib><title>Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Examination of the subcellular localization of Dishevelled (Dsh) in fertilized Xenopus eggs revealed that Dsh is associated with vesicle-like organelles that are enriched on the prospective dorsal side of the embryo after cortical rotation. Dorsal enrichment of Dsh is blocked by UV irradiation of the vegetal pole, a treatment that inhibits development of dorsal cell fates, linking accumulation of Dsh and specification of dorsal cell fates. Investigation of the dynamics of Dsh localization using Dsh tagged with green fluorescent protein (Dsh-GFP) demonstrated that Dsh-GFP associates with small vesicle-like organelles that are directionally transported along the parallel array of microtubules towards the prospective dorsal side of the embryo during cortical rotation. Perturbing the assembly of the microtubule array with D2 O, a treatment that promotes the random assembly of the array and the dorsalization of embryos, randomizes translocation of Dsh-GFP. Conversely, UV irradiation of the vegetal pole abolishes movement of Dsh-GFP. Finally, we demonstrate that overexpression of Dsh can stabilize β-catenin in Xenopus. These data suggest that the directional translocation of Dsh along microtubules during cortical rotation and its subsequent enrichment on the prospective dorsal side of the embryo play a role in locally activating a maternal Wnt pathway responsible for establishing dorsal cell fates in Xenopus.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Antibodies</subject><subject>beta Catenin</subject><subject>Biological Transport - drug effects</subject><subject>Biological Transport - radiation effects</subject><subject>Blastocyst - cytology</subject><subject>Blastocyst - metabolism</subject><subject>Body Patterning - drug effects</subject><subject>Body Patterning - radiation effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - radiation effects</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Polarity - radiation effects</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Deuterium Oxide - pharmacology</subject><subject>Dishevelled Proteins</subject><subject>Eggs</subject><subject>Embryo, Nonmammalian - drug effects</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - radiation effects</subject><subject>Embryogenesis</subject><subject>Embryonic Development</subject><subject>Embryos</subject><subject>Frizzled Receptors</subject><subject>Frogs</subject><subject>Microtubules</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Natural satellites</subject><subject>Nocodazole - pharmacology</subject><subject>Oocytes</subject><subject>Organelles</subject><subject>Organelles - drug effects</subject><subject>Organelles - metabolism</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Receptors, Neurotransmitter - genetics</subject><subject>Receptors, Neurotransmitter - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Rotation</subject><subject>Trans-Activators</subject><subject>Ultraviolet Rays</subject><subject>Xenopus</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - metabolism</subject><subject>Xenopus Proteins</subject><subject>Zygote - cytology</subject><subject>Zygote - drug effects</subject><subject>Zygote - metabolism</subject><subject>Zygote - radiation effects</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFvFCEYBmBiNHatHr0ZQzx4m5UPZgY4NrurNmliYqrxRhgGsmxmYAVG7R_x90rdRhsvciGBhzcfeRF6DmQNRLA3BzOsoe3XdN1S_gCtoGtJI6AlD9GKEAqN7Gh3hp7kfCCEtLxlj9EZkIqJ7Fbo5y4XPUw-72cbCo4Ol73F25iynprP9SjpCV_88Bn7gL_YEI9Lxrt5SDcx4030wfjRZvzdl_29l3gXkjd_Irc13n6z02RHfL3XBV9mvLVHG8bfINSgVLyp7z7GoouP4Sl65PSU7bO7_Rx9eru73rxvrj68u9xcXDWG9aI0wgxWdKwTQvLBCW0sMCaADi3RspP96DjveTsCgObghAMYpITWcUpdZxw7R69PuccUvy42FzX7bOqkOti4ZNVLyQhn4r8QOKtjyFv46h94iEsK9ROKAie8rr6i5oRMijkn69Qx-VmnGwVE3daqaq2q1qqoqk1V__IudBlmO97Tpx4reHECh1xi-nvfg2Qg2C9CCqfy</recordid><startdate>19990726</startdate><enddate>19990726</enddate><creator>Miller, Jeffrey R.</creator><creator>Rowning, Brian A.</creator><creator>Larabell, Carolyn A.</creator><creator>Yang-Snyder, Julia A.</creator><creator>Bates, Rebecca L.</creator><creator>Moon, Randall T.</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19990726</creationdate><title>Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation</title><author>Miller, Jeffrey R. ; Rowning, Brian A. ; Larabell, Carolyn A. ; Yang-Snyder, Julia A. ; Bates, Rebecca L. ; Moon, Randall T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8cbe85358897bf8ace133812b40a9596df77674d111a71f8f11b9914f722f5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Antibodies</topic><topic>beta Catenin</topic><topic>Biological Transport - drug effects</topic><topic>Biological Transport - radiation effects</topic><topic>Blastocyst - cytology</topic><topic>Blastocyst - metabolism</topic><topic>Body Patterning - drug effects</topic><topic>Body Patterning - radiation effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - radiation effects</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Polarity - radiation effects</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Deuterium Oxide - pharmacology</topic><topic>Dishevelled Proteins</topic><topic>Eggs</topic><topic>Embryo, Nonmammalian - drug effects</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - radiation effects</topic><topic>Embryogenesis</topic><topic>Embryonic Development</topic><topic>Embryos</topic><topic>Frizzled Receptors</topic><topic>Frogs</topic><topic>Microtubules</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Natural satellites</topic><topic>Nocodazole - pharmacology</topic><topic>Oocytes</topic><topic>Organelles</topic><topic>Organelles - drug effects</topic><topic>Organelles - metabolism</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Receptors, Neurotransmitter - genetics</topic><topic>Receptors, Neurotransmitter - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Rotation</topic><topic>Trans-Activators</topic><topic>Ultraviolet Rays</topic><topic>Xenopus</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - metabolism</topic><topic>Xenopus Proteins</topic><topic>Zygote - cytology</topic><topic>Zygote - drug effects</topic><topic>Zygote - metabolism</topic><topic>Zygote - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeffrey R.</creatorcontrib><creatorcontrib>Rowning, Brian A.</creatorcontrib><creatorcontrib>Larabell, Carolyn A.</creatorcontrib><creatorcontrib>Yang-Snyder, Julia A.</creatorcontrib><creatorcontrib>Bates, Rebecca L.</creatorcontrib><creatorcontrib>Moon, Randall T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeffrey R.</au><au>Rowning, Brian A.</au><au>Larabell, Carolyn A.</au><au>Yang-Snyder, Julia A.</au><au>Bates, Rebecca L.</au><au>Moon, Randall T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1999-07-26</date><risdate>1999</risdate><volume>146</volume><issue>2</issue><spage>427</spage><epage>437</epage><pages>427-437</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Examination of the subcellular localization of Dishevelled (Dsh) in fertilized Xenopus eggs revealed that Dsh is associated with vesicle-like organelles that are enriched on the prospective dorsal side of the embryo after cortical rotation. Dorsal enrichment of Dsh is blocked by UV irradiation of the vegetal pole, a treatment that inhibits development of dorsal cell fates, linking accumulation of Dsh and specification of dorsal cell fates. Investigation of the dynamics of Dsh localization using Dsh tagged with green fluorescent protein (Dsh-GFP) demonstrated that Dsh-GFP associates with small vesicle-like organelles that are directionally transported along the parallel array of microtubules towards the prospective dorsal side of the embryo during cortical rotation. Perturbing the assembly of the microtubule array with D2 O, a treatment that promotes the random assembly of the array and the dorsalization of embryos, randomizes translocation of Dsh-GFP. Conversely, UV irradiation of the vegetal pole abolishes movement of Dsh-GFP. Finally, we demonstrate that overexpression of Dsh can stabilize β-catenin in Xenopus. These data suggest that the directional translocation of Dsh along microtubules during cortical rotation and its subsequent enrichment on the prospective dorsal side of the embryo play a role in locally activating a maternal Wnt pathway responsible for establishing dorsal cell fates in Xenopus.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>10427095</pmid><doi>10.1083/jcb.146.2.427</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 1999-07, Vol.146 (2), p.427-437 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_proquest_miscellaneous_69930738 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing Animals Antibodies beta Catenin Biological Transport - drug effects Biological Transport - radiation effects Blastocyst - cytology Blastocyst - metabolism Body Patterning - drug effects Body Patterning - radiation effects Cell Differentiation - drug effects Cell Differentiation - radiation effects Cell Polarity - drug effects Cell Polarity - radiation effects Cells Cellular biology Cytoskeletal Proteins - metabolism Deuterium Oxide - pharmacology Dishevelled Proteins Eggs Embryo, Nonmammalian - drug effects Embryo, Nonmammalian - metabolism Embryo, Nonmammalian - radiation effects Embryogenesis Embryonic Development Embryos Frizzled Receptors Frogs Microtubules Microtubules - drug effects Microtubules - metabolism Models, Biological Natural satellites Nocodazole - pharmacology Oocytes Organelles Organelles - drug effects Organelles - metabolism Phosphoproteins - genetics Phosphoproteins - metabolism Proteins Rats Receptors, G-Protein-Coupled Receptors, Neurotransmitter - genetics Receptors, Neurotransmitter - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Rotation Trans-Activators Ultraviolet Rays Xenopus Xenopus laevis - embryology Xenopus laevis - metabolism Xenopus Proteins Zygote - cytology Zygote - drug effects Zygote - metabolism Zygote - radiation effects |
title | Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20the%20Dorsal-Ventral%20Axis%20in%20Xenopus%20Embryos%20Coincides%20with%20the%20Dorsal%20Enrichment%20of%20Dishevelled%20That%20Is%20Dependent%20on%20Cortical%20Rotation&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Miller,%20Jeffrey%20R.&rft.date=1999-07-26&rft.volume=146&rft.issue=2&rft.spage=427&rft.epage=437&rft.pages=427-437&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.146.2.427&rft_dat=%3Cjstor_proqu%3E1619318%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217077776&rft_id=info:pmid/10427095&rft_jstor_id=1619318&rfr_iscdi=true |