Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate
Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2008-01, Vol.58 (11), p.2215-2222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 11 |
container_start_page | 2215 |
container_title | Water science and technology |
container_volume | 58 |
creator | Krajangpan, Sita Bermudez, Juan J Elorza Bezbaruah, Achintya N Chisholm, Bret J Khan, Eakalak |
description | Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment. |
doi_str_mv | 10.2166/wst.2008.925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69913299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69913299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTm2cJCJ7szFeT5ijDLxjuoueQpol0tE1NWmX-9WZsIHjZKfDw4-ENDwCXGM0J5vzuOw5zglAxlyQ_AlMsJc-koOQYTBERNMOE0Ak4i3GNEBKUoVMwwRJJkuQUrF7rIejBwmBb_6UbWG6g7VLU97aCPzb4LKUpgXXwHex053sdhto0NsK6g0Y3ph5bqJuPuks95-DE6Sbai_07A--PD2-L52y5enpZ3C8zQ4UcMs5QQbBwlleOM4FLzIpSGOmMoJY45ox2xpSS5bkTAgvMCM15VYkCI4JIRWfgZtfbB_852jioto7GNo3urB-j4lJiSqQ8CAmiHHFMDsJ0oaBCoASv_8G1H0OXfquwZJRzjos8qdudMsHHGKxTfahbHTYKI7UdTqXh1HY4lYZL_GpfOpatrf7wfin6C0aZkvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943666185</pqid></control><display><type>article</type><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</creator><creatorcontrib>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</creatorcontrib><description>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2008.925</identifier><identifier>PMID: 19092199</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Alginates - chemistry ; Alginates - ultrastructure ; Alginic acid ; Barriers ; Beads ; Bridges ; Calcium ; Calcium alginate ; Contaminants ; Electron microscopy ; Entrapment ; Environmental cleanup ; Gels ; Glucuronic Acid - chemistry ; Groundwater ; Groundwater barriers ; Groundwater treatment ; Hexuronic Acids - chemistry ; Iron ; Iron - chemistry ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microspheres ; Nanoparticles ; Nitrate removal ; Nitrates ; Nitrates - isolation & purification ; Nutrient removal ; Oxidation-Reduction ; Particle Size ; Permeable reactive barriers ; Pollution prevention ; Reaction kinetics ; Remediation ; Removal ; Scanning electron microscopy ; Seaweed meal ; Statistical analysis ; Statistical methods ; Time Factors</subject><ispartof>Water science and technology, 2008-01, Vol.58 (11), p.2215-2222</ispartof><rights>Copyright (c) IWA Publishing 2008.</rights><rights>Copyright IWA Publishing Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19092199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajangpan, Sita</creatorcontrib><creatorcontrib>Bermudez, Juan J Elorza</creatorcontrib><creatorcontrib>Bezbaruah, Achintya N</creatorcontrib><creatorcontrib>Chisholm, Bret J</creatorcontrib><creatorcontrib>Khan, Eakalak</creatorcontrib><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</description><subject>Alginates - chemistry</subject><subject>Alginates - ultrastructure</subject><subject>Alginic acid</subject><subject>Barriers</subject><subject>Beads</subject><subject>Bridges</subject><subject>Calcium</subject><subject>Calcium alginate</subject><subject>Contaminants</subject><subject>Electron microscopy</subject><subject>Entrapment</subject><subject>Environmental cleanup</subject><subject>Gels</subject><subject>Glucuronic Acid - chemistry</subject><subject>Groundwater</subject><subject>Groundwater barriers</subject><subject>Groundwater treatment</subject><subject>Hexuronic Acids - chemistry</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Nitrates - isolation & purification</subject><subject>Nutrient removal</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Permeable reactive barriers</subject><subject>Pollution prevention</subject><subject>Reaction kinetics</subject><subject>Remediation</subject><subject>Removal</subject><subject>Scanning electron microscopy</subject><subject>Seaweed meal</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time Factors</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0c1LwzAYBvAgipvTm2cJCJ7szFeT5ijDLxjuoueQpol0tE1NWmX-9WZsIHjZKfDw4-ENDwCXGM0J5vzuOw5zglAxlyQ_AlMsJc-koOQYTBERNMOE0Ak4i3GNEBKUoVMwwRJJkuQUrF7rIejBwmBb_6UbWG6g7VLU97aCPzb4LKUpgXXwHex053sdhto0NsK6g0Y3ph5bqJuPuks95-DE6Sbai_07A--PD2-L52y5enpZ3C8zQ4UcMs5QQbBwlleOM4FLzIpSGOmMoJY45ox2xpSS5bkTAgvMCM15VYkCI4JIRWfgZtfbB_852jioto7GNo3urB-j4lJiSqQ8CAmiHHFMDsJ0oaBCoASv_8G1H0OXfquwZJRzjos8qdudMsHHGKxTfahbHTYKI7UdTqXh1HY4lYZL_GpfOpatrf7wfin6C0aZkvw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Krajangpan, Sita</creator><creator>Bermudez, Juan J Elorza</creator><creator>Bezbaruah, Achintya N</creator><creator>Chisholm, Bret J</creator><creator>Khan, Eakalak</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><author>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alginates - chemistry</topic><topic>Alginates - ultrastructure</topic><topic>Alginic acid</topic><topic>Barriers</topic><topic>Beads</topic><topic>Bridges</topic><topic>Calcium</topic><topic>Calcium alginate</topic><topic>Contaminants</topic><topic>Electron microscopy</topic><topic>Entrapment</topic><topic>Environmental cleanup</topic><topic>Gels</topic><topic>Glucuronic Acid - chemistry</topic><topic>Groundwater</topic><topic>Groundwater barriers</topic><topic>Groundwater treatment</topic><topic>Hexuronic Acids - chemistry</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Nitrates - isolation & purification</topic><topic>Nutrient removal</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Permeable reactive barriers</topic><topic>Pollution prevention</topic><topic>Reaction kinetics</topic><topic>Remediation</topic><topic>Removal</topic><topic>Scanning electron microscopy</topic><topic>Seaweed meal</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajangpan, Sita</creatorcontrib><creatorcontrib>Bermudez, Juan J Elorza</creatorcontrib><creatorcontrib>Bezbaruah, Achintya N</creatorcontrib><creatorcontrib>Chisholm, Bret J</creatorcontrib><creatorcontrib>Khan, Eakalak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajangpan, Sita</au><au>Bermudez, Juan J Elorza</au><au>Bezbaruah, Achintya N</au><au>Chisholm, Bret J</au><au>Khan, Eakalak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>58</volume><issue>11</issue><spage>2215</spage><epage>2222</epage><pages>2215-2222</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>19092199</pmid><doi>10.2166/wst.2008.925</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2008-01, Vol.58 (11), p.2215-2222 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_69913299 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Alginates - chemistry Alginates - ultrastructure Alginic acid Barriers Beads Bridges Calcium Calcium alginate Contaminants Electron microscopy Entrapment Environmental cleanup Gels Glucuronic Acid - chemistry Groundwater Groundwater barriers Groundwater treatment Hexuronic Acids - chemistry Iron Iron - chemistry Kinetics Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microspheres Nanoparticles Nitrate removal Nitrates Nitrates - isolation & purification Nutrient removal Oxidation-Reduction Particle Size Permeable reactive barriers Pollution prevention Reaction kinetics Remediation Removal Scanning electron microscopy Seaweed meal Statistical analysis Statistical methods Time Factors |
title | Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20removal%20by%20entrapped%20zero-valent%20iron%20nanoparticles%20in%20calcium%20alginate&rft.jtitle=Water%20science%20and%20technology&rft.au=Krajangpan,%20Sita&rft.date=2008-01-01&rft.volume=58&rft.issue=11&rft.spage=2215&rft.epage=2222&rft.pages=2215-2222&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2008.925&rft_dat=%3Cproquest_cross%3E69913299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943666185&rft_id=info:pmid/19092199&rfr_iscdi=true |