Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate

Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2008-01, Vol.58 (11), p.2215-2222
Hauptverfasser: Krajangpan, Sita, Bermudez, Juan J Elorza, Bezbaruah, Achintya N, Chisholm, Bret J, Khan, Eakalak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 11
container_start_page 2215
container_title Water science and technology
container_volume 58
creator Krajangpan, Sita
Bermudez, Juan J Elorza
Bezbaruah, Achintya N
Chisholm, Bret J
Khan, Eakalak
description Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.
doi_str_mv 10.2166/wst.2008.925
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69913299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69913299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTm2cJCJ7szFeT5ijDLxjuoueQpol0tE1NWmX-9WZsIHjZKfDw4-ENDwCXGM0J5vzuOw5zglAxlyQ_AlMsJc-koOQYTBERNMOE0Ak4i3GNEBKUoVMwwRJJkuQUrF7rIejBwmBb_6UbWG6g7VLU97aCPzb4LKUpgXXwHex053sdhto0NsK6g0Y3ph5bqJuPuks95-DE6Sbai_07A--PD2-L52y5enpZ3C8zQ4UcMs5QQbBwlleOM4FLzIpSGOmMoJY45ox2xpSS5bkTAgvMCM15VYkCI4JIRWfgZtfbB_852jioto7GNo3urB-j4lJiSqQ8CAmiHHFMDsJ0oaBCoASv_8G1H0OXfquwZJRzjos8qdudMsHHGKxTfahbHTYKI7UdTqXh1HY4lYZL_GpfOpatrf7wfin6C0aZkvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943666185</pqid></control><display><type>article</type><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</creator><creatorcontrib>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</creatorcontrib><description>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2008.925</identifier><identifier>PMID: 19092199</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Alginates - chemistry ; Alginates - ultrastructure ; Alginic acid ; Barriers ; Beads ; Bridges ; Calcium ; Calcium alginate ; Contaminants ; Electron microscopy ; Entrapment ; Environmental cleanup ; Gels ; Glucuronic Acid - chemistry ; Groundwater ; Groundwater barriers ; Groundwater treatment ; Hexuronic Acids - chemistry ; Iron ; Iron - chemistry ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microspheres ; Nanoparticles ; Nitrate removal ; Nitrates ; Nitrates - isolation &amp; purification ; Nutrient removal ; Oxidation-Reduction ; Particle Size ; Permeable reactive barriers ; Pollution prevention ; Reaction kinetics ; Remediation ; Removal ; Scanning electron microscopy ; Seaweed meal ; Statistical analysis ; Statistical methods ; Time Factors</subject><ispartof>Water science and technology, 2008-01, Vol.58 (11), p.2215-2222</ispartof><rights>Copyright (c) IWA Publishing 2008.</rights><rights>Copyright IWA Publishing Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19092199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajangpan, Sita</creatorcontrib><creatorcontrib>Bermudez, Juan J Elorza</creatorcontrib><creatorcontrib>Bezbaruah, Achintya N</creatorcontrib><creatorcontrib>Chisholm, Bret J</creatorcontrib><creatorcontrib>Khan, Eakalak</creatorcontrib><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</description><subject>Alginates - chemistry</subject><subject>Alginates - ultrastructure</subject><subject>Alginic acid</subject><subject>Barriers</subject><subject>Beads</subject><subject>Bridges</subject><subject>Calcium</subject><subject>Calcium alginate</subject><subject>Contaminants</subject><subject>Electron microscopy</subject><subject>Entrapment</subject><subject>Environmental cleanup</subject><subject>Gels</subject><subject>Glucuronic Acid - chemistry</subject><subject>Groundwater</subject><subject>Groundwater barriers</subject><subject>Groundwater treatment</subject><subject>Hexuronic Acids - chemistry</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Nitrates - isolation &amp; purification</subject><subject>Nutrient removal</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Permeable reactive barriers</subject><subject>Pollution prevention</subject><subject>Reaction kinetics</subject><subject>Remediation</subject><subject>Removal</subject><subject>Scanning electron microscopy</subject><subject>Seaweed meal</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time Factors</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0c1LwzAYBvAgipvTm2cJCJ7szFeT5ijDLxjuoueQpol0tE1NWmX-9WZsIHjZKfDw4-ENDwCXGM0J5vzuOw5zglAxlyQ_AlMsJc-koOQYTBERNMOE0Ak4i3GNEBKUoVMwwRJJkuQUrF7rIejBwmBb_6UbWG6g7VLU97aCPzb4LKUpgXXwHex053sdhto0NsK6g0Y3ph5bqJuPuks95-DE6Sbai_07A--PD2-L52y5enpZ3C8zQ4UcMs5QQbBwlleOM4FLzIpSGOmMoJY45ox2xpSS5bkTAgvMCM15VYkCI4JIRWfgZtfbB_852jioto7GNo3urB-j4lJiSqQ8CAmiHHFMDsJ0oaBCoASv_8G1H0OXfquwZJRzjos8qdudMsHHGKxTfahbHTYKI7UdTqXh1HY4lYZL_GpfOpatrf7wfin6C0aZkvw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Krajangpan, Sita</creator><creator>Bermudez, Juan J Elorza</creator><creator>Bezbaruah, Achintya N</creator><creator>Chisholm, Bret J</creator><creator>Khan, Eakalak</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</title><author>Krajangpan, Sita ; Bermudez, Juan J Elorza ; Bezbaruah, Achintya N ; Chisholm, Bret J ; Khan, Eakalak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6408217fe6df6471b148b7c9fc73e2f4fcafccb9455f7717142356dd7810202d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alginates - chemistry</topic><topic>Alginates - ultrastructure</topic><topic>Alginic acid</topic><topic>Barriers</topic><topic>Beads</topic><topic>Bridges</topic><topic>Calcium</topic><topic>Calcium alginate</topic><topic>Contaminants</topic><topic>Electron microscopy</topic><topic>Entrapment</topic><topic>Environmental cleanup</topic><topic>Gels</topic><topic>Glucuronic Acid - chemistry</topic><topic>Groundwater</topic><topic>Groundwater barriers</topic><topic>Groundwater treatment</topic><topic>Hexuronic Acids - chemistry</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Nitrates - isolation &amp; purification</topic><topic>Nutrient removal</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Permeable reactive barriers</topic><topic>Pollution prevention</topic><topic>Reaction kinetics</topic><topic>Remediation</topic><topic>Removal</topic><topic>Scanning electron microscopy</topic><topic>Seaweed meal</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajangpan, Sita</creatorcontrib><creatorcontrib>Bermudez, Juan J Elorza</creatorcontrib><creatorcontrib>Bezbaruah, Achintya N</creatorcontrib><creatorcontrib>Chisholm, Bret J</creatorcontrib><creatorcontrib>Khan, Eakalak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajangpan, Sita</au><au>Bermudez, Juan J Elorza</au><au>Bezbaruah, Achintya N</au><au>Chisholm, Bret J</au><au>Khan, Eakalak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>58</volume><issue>11</issue><spage>2215</spage><epage>2222</epage><pages>2215-2222</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>19092199</pmid><doi>10.2166/wst.2008.925</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2008-01, Vol.58 (11), p.2215-2222
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_69913299
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Alginates - chemistry
Alginates - ultrastructure
Alginic acid
Barriers
Beads
Bridges
Calcium
Calcium alginate
Contaminants
Electron microscopy
Entrapment
Environmental cleanup
Gels
Glucuronic Acid - chemistry
Groundwater
Groundwater barriers
Groundwater treatment
Hexuronic Acids - chemistry
Iron
Iron - chemistry
Kinetics
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microspheres
Nanoparticles
Nitrate removal
Nitrates
Nitrates - isolation & purification
Nutrient removal
Oxidation-Reduction
Particle Size
Permeable reactive barriers
Pollution prevention
Reaction kinetics
Remediation
Removal
Scanning electron microscopy
Seaweed meal
Statistical analysis
Statistical methods
Time Factors
title Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20removal%20by%20entrapped%20zero-valent%20iron%20nanoparticles%20in%20calcium%20alginate&rft.jtitle=Water%20science%20and%20technology&rft.au=Krajangpan,%20Sita&rft.date=2008-01-01&rft.volume=58&rft.issue=11&rft.spage=2215&rft.epage=2222&rft.pages=2215-2222&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2008.925&rft_dat=%3Cproquest_cross%3E69913299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943666185&rft_id=info:pmid/19092199&rfr_iscdi=true