Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family

Fast inhibitory neurotransmission in the mammalian CNS is mediated primarily by the neurotransmitter γ‐aminobutyric acid (GABA), which, upon binding to its receptor, leads to opening of the intrinsic ion channel, allowing chloride to enter the cell. Over the past 10 years it has become clear that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 1999-04, Vol.868 (1), p.645-653
Hauptverfasser: WHITING, PAUL J., BONNERT, TIMOTHY P., MCKERNAN, RUTH M., FARRAR, SOPHIE, BOURDELLES, BEATRICE LE, HEAVENS, ROBERT P., SMITH, DAVID W., HEWSON, LOUISE, RIGBY, MICHAEL R., SIRINATHSINGHJI, DALIP J. S., THOMPSON, SALLY A., WAFFORD, KEITH A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 1
container_start_page 645
container_title Annals of the New York Academy of Sciences
container_volume 868
creator WHITING, PAUL J.
BONNERT, TIMOTHY P.
MCKERNAN, RUTH M.
FARRAR, SOPHIE
BOURDELLES, BEATRICE LE
HEAVENS, ROBERT P.
SMITH, DAVID W.
HEWSON, LOUISE
RIGBY, MICHAEL R.
SIRINATHSINGHJI, DALIP J. S.
THOMPSON, SALLY A.
WAFFORD, KEITH A.
description Fast inhibitory neurotransmission in the mammalian CNS is mediated primarily by the neurotransmitter γ‐aminobutyric acid (GABA), which, upon binding to its receptor, leads to opening of the intrinsic ion channel, allowing chloride to enter the cell. Over the past 10 years it has become clear that a family of GABA‐A receptor subtypes exists, generated through the coassembly of polypeptides selected from α1‐α6, β1‐β3, γ1‐γ3, δ, ɛ, and π to form what is most likely a pentomeric macromolecule. The gene transcripts, and indeed the polypeptides, show distinct patterns of temporal and spatial expression, such that the GABA‐A receptor subtypes have a defined localization that presumably reflects their physiological role. A picture is beginning to emerge of the properties conferred to receptor subtypes by the different subunits; these include different functional properties, differential modulation by protein kinases, and the targeting to different membrane compartments. These properties presumably underlie the different physiological roles of the various receptor subtypes. Recently we have identified a further member of the GABA‐A receptor gene family, which we have termed θ, which appears to be most closely related to the β subunits. The structure, function, and distribution of θ‐containing receptors, and receptors containing the recently reported ɛ subunit, are described.
doi_str_mv 10.1111/j.1749-6632.1999.tb11341.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69901320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69901320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-5a3f15044ddd81b91f2da9770864722ed9cf7d9a312441ec056163ac77b9c0113</originalsourceid><addsrcrecordid>eNqVkM9v0zAUgK0JtJVt_wKyOHBL5hc7cb0LCmXNkPZLjIHYxXKdF3CXJsVORvvfkyrVxBVffPD3Put9hLwDFsNwzpYxSKGiLONJDEqpuFsAcAHx5oBMXp5ekQljUkZTlfAj8iaEJWOQTIU8JEfABAgu1ITcXrc12r42npqmpPO-sZ1rG1PTT-4ZfXDdlrYV7X4hvdisB8Q1P2mRf8yjnH5Bi-uu9bTABuncrFy9PSGvK1MHPN3fx-RhfvF1dhld3RafZ_lVZIVM0yg1vIKUCVGW5RQWCqqkNEpKNs2ETBIsla1kqQyHRAhAy9IMMm6slAtl2bDtMXk_ete-_d1j6PTKBYt1bRps-6AzpRjwhA3g-Qha34bgsdJr71bGbzUwvcupl3rXTO-a6V1Ovc-pN8Pw2_0v_WKF5T-jY78B-DACf1yN2_9Q65sf-X0m0sEQjQYXOty8GIx_0pnkMtXfbwr9WFzO7ud33_Q1_wudtpMp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69901320</pqid></control><display><type>article</type><title>Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>WHITING, PAUL J. ; BONNERT, TIMOTHY P. ; MCKERNAN, RUTH M. ; FARRAR, SOPHIE ; BOURDELLES, BEATRICE LE ; HEAVENS, ROBERT P. ; SMITH, DAVID W. ; HEWSON, LOUISE ; RIGBY, MICHAEL R. ; SIRINATHSINGHJI, DALIP J. S. ; THOMPSON, SALLY A. ; WAFFORD, KEITH A.</creator><creatorcontrib>WHITING, PAUL J. ; BONNERT, TIMOTHY P. ; MCKERNAN, RUTH M. ; FARRAR, SOPHIE ; BOURDELLES, BEATRICE LE ; HEAVENS, ROBERT P. ; SMITH, DAVID W. ; HEWSON, LOUISE ; RIGBY, MICHAEL R. ; SIRINATHSINGHJI, DALIP J. S. ; THOMPSON, SALLY A. ; WAFFORD, KEITH A.</creatorcontrib><description>Fast inhibitory neurotransmission in the mammalian CNS is mediated primarily by the neurotransmitter γ‐aminobutyric acid (GABA), which, upon binding to its receptor, leads to opening of the intrinsic ion channel, allowing chloride to enter the cell. Over the past 10 years it has become clear that a family of GABA‐A receptor subtypes exists, generated through the coassembly of polypeptides selected from α1‐α6, β1‐β3, γ1‐γ3, δ, ɛ, and π to form what is most likely a pentomeric macromolecule. The gene transcripts, and indeed the polypeptides, show distinct patterns of temporal and spatial expression, such that the GABA‐A receptor subtypes have a defined localization that presumably reflects their physiological role. A picture is beginning to emerge of the properties conferred to receptor subtypes by the different subunits; these include different functional properties, differential modulation by protein kinases, and the targeting to different membrane compartments. These properties presumably underlie the different physiological roles of the various receptor subtypes. Recently we have identified a further member of the GABA‐A receptor gene family, which we have termed θ, which appears to be most closely related to the β subunits. The structure, function, and distribution of θ‐containing receptors, and receptors containing the recently reported ɛ subunit, are described.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.1999.tb11341.x</identifier><identifier>PMID: 10414349</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Benzodiazepines - metabolism ; Binding Sites ; Chromosomes, Human - genetics ; Conserved Sequence ; gamma-Aminobutyric Acid - metabolism ; Humans ; Ion Channel Gating ; Models, Molecular ; Picrotoxin - metabolism ; Receptors, GABA-A - chemistry ; Receptors, GABA-A - classification ; Receptors, GABA-A - genetics ; Sequence Homology, Amino Acid</subject><ispartof>Annals of the New York Academy of Sciences, 1999-04, Vol.868 (1), p.645-653</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-5a3f15044ddd81b91f2da9770864722ed9cf7d9a312441ec056163ac77b9c0113</citedby><cites>FETCH-LOGICAL-c4755-5a3f15044ddd81b91f2da9770864722ed9cf7d9a312441ec056163ac77b9c0113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.1999.tb11341.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.1999.tb11341.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10414349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WHITING, PAUL J.</creatorcontrib><creatorcontrib>BONNERT, TIMOTHY P.</creatorcontrib><creatorcontrib>MCKERNAN, RUTH M.</creatorcontrib><creatorcontrib>FARRAR, SOPHIE</creatorcontrib><creatorcontrib>BOURDELLES, BEATRICE LE</creatorcontrib><creatorcontrib>HEAVENS, ROBERT P.</creatorcontrib><creatorcontrib>SMITH, DAVID W.</creatorcontrib><creatorcontrib>HEWSON, LOUISE</creatorcontrib><creatorcontrib>RIGBY, MICHAEL R.</creatorcontrib><creatorcontrib>SIRINATHSINGHJI, DALIP J. S.</creatorcontrib><creatorcontrib>THOMPSON, SALLY A.</creatorcontrib><creatorcontrib>WAFFORD, KEITH A.</creatorcontrib><title>Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Fast inhibitory neurotransmission in the mammalian CNS is mediated primarily by the neurotransmitter γ‐aminobutyric acid (GABA), which, upon binding to its receptor, leads to opening of the intrinsic ion channel, allowing chloride to enter the cell. Over the past 10 years it has become clear that a family of GABA‐A receptor subtypes exists, generated through the coassembly of polypeptides selected from α1‐α6, β1‐β3, γ1‐γ3, δ, ɛ, and π to form what is most likely a pentomeric macromolecule. The gene transcripts, and indeed the polypeptides, show distinct patterns of temporal and spatial expression, such that the GABA‐A receptor subtypes have a defined localization that presumably reflects their physiological role. A picture is beginning to emerge of the properties conferred to receptor subtypes by the different subunits; these include different functional properties, differential modulation by protein kinases, and the targeting to different membrane compartments. These properties presumably underlie the different physiological roles of the various receptor subtypes. Recently we have identified a further member of the GABA‐A receptor gene family, which we have termed θ, which appears to be most closely related to the β subunits. The structure, function, and distribution of θ‐containing receptors, and receptors containing the recently reported ɛ subunit, are described.</description><subject>Benzodiazepines - metabolism</subject><subject>Binding Sites</subject><subject>Chromosomes, Human - genetics</subject><subject>Conserved Sequence</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Models, Molecular</subject><subject>Picrotoxin - metabolism</subject><subject>Receptors, GABA-A - chemistry</subject><subject>Receptors, GABA-A - classification</subject><subject>Receptors, GABA-A - genetics</subject><subject>Sequence Homology, Amino Acid</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkM9v0zAUgK0JtJVt_wKyOHBL5hc7cb0LCmXNkPZLjIHYxXKdF3CXJsVORvvfkyrVxBVffPD3Put9hLwDFsNwzpYxSKGiLONJDEqpuFsAcAHx5oBMXp5ekQljUkZTlfAj8iaEJWOQTIU8JEfABAgu1ITcXrc12r42npqmpPO-sZ1rG1PTT-4ZfXDdlrYV7X4hvdisB8Q1P2mRf8yjnH5Bi-uu9bTABuncrFy9PSGvK1MHPN3fx-RhfvF1dhld3RafZ_lVZIVM0yg1vIKUCVGW5RQWCqqkNEpKNs2ETBIsla1kqQyHRAhAy9IMMm6slAtl2bDtMXk_ete-_d1j6PTKBYt1bRps-6AzpRjwhA3g-Qha34bgsdJr71bGbzUwvcupl3rXTO-a6V1Ovc-pN8Pw2_0v_WKF5T-jY78B-DACf1yN2_9Q65sf-X0m0sEQjQYXOty8GIx_0pnkMtXfbwr9WFzO7ud33_Q1_wudtpMp</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>WHITING, PAUL J.</creator><creator>BONNERT, TIMOTHY P.</creator><creator>MCKERNAN, RUTH M.</creator><creator>FARRAR, SOPHIE</creator><creator>BOURDELLES, BEATRICE LE</creator><creator>HEAVENS, ROBERT P.</creator><creator>SMITH, DAVID W.</creator><creator>HEWSON, LOUISE</creator><creator>RIGBY, MICHAEL R.</creator><creator>SIRINATHSINGHJI, DALIP J. S.</creator><creator>THOMPSON, SALLY A.</creator><creator>WAFFORD, KEITH A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199904</creationdate><title>Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family</title><author>WHITING, PAUL J. ; BONNERT, TIMOTHY P. ; MCKERNAN, RUTH M. ; FARRAR, SOPHIE ; BOURDELLES, BEATRICE LE ; HEAVENS, ROBERT P. ; SMITH, DAVID W. ; HEWSON, LOUISE ; RIGBY, MICHAEL R. ; SIRINATHSINGHJI, DALIP J. S. ; THOMPSON, SALLY A. ; WAFFORD, KEITH A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-5a3f15044ddd81b91f2da9770864722ed9cf7d9a312441ec056163ac77b9c0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Benzodiazepines - metabolism</topic><topic>Binding Sites</topic><topic>Chromosomes, Human - genetics</topic><topic>Conserved Sequence</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Models, Molecular</topic><topic>Picrotoxin - metabolism</topic><topic>Receptors, GABA-A - chemistry</topic><topic>Receptors, GABA-A - classification</topic><topic>Receptors, GABA-A - genetics</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WHITING, PAUL J.</creatorcontrib><creatorcontrib>BONNERT, TIMOTHY P.</creatorcontrib><creatorcontrib>MCKERNAN, RUTH M.</creatorcontrib><creatorcontrib>FARRAR, SOPHIE</creatorcontrib><creatorcontrib>BOURDELLES, BEATRICE LE</creatorcontrib><creatorcontrib>HEAVENS, ROBERT P.</creatorcontrib><creatorcontrib>SMITH, DAVID W.</creatorcontrib><creatorcontrib>HEWSON, LOUISE</creatorcontrib><creatorcontrib>RIGBY, MICHAEL R.</creatorcontrib><creatorcontrib>SIRINATHSINGHJI, DALIP J. S.</creatorcontrib><creatorcontrib>THOMPSON, SALLY A.</creatorcontrib><creatorcontrib>WAFFORD, KEITH A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WHITING, PAUL J.</au><au>BONNERT, TIMOTHY P.</au><au>MCKERNAN, RUTH M.</au><au>FARRAR, SOPHIE</au><au>BOURDELLES, BEATRICE LE</au><au>HEAVENS, ROBERT P.</au><au>SMITH, DAVID W.</au><au>HEWSON, LOUISE</au><au>RIGBY, MICHAEL R.</au><au>SIRINATHSINGHJI, DALIP J. S.</au><au>THOMPSON, SALLY A.</au><au>WAFFORD, KEITH A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>1999-04</date><risdate>1999</risdate><volume>868</volume><issue>1</issue><spage>645</spage><epage>653</epage><pages>645-653</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Fast inhibitory neurotransmission in the mammalian CNS is mediated primarily by the neurotransmitter γ‐aminobutyric acid (GABA), which, upon binding to its receptor, leads to opening of the intrinsic ion channel, allowing chloride to enter the cell. Over the past 10 years it has become clear that a family of GABA‐A receptor subtypes exists, generated through the coassembly of polypeptides selected from α1‐α6, β1‐β3, γ1‐γ3, δ, ɛ, and π to form what is most likely a pentomeric macromolecule. The gene transcripts, and indeed the polypeptides, show distinct patterns of temporal and spatial expression, such that the GABA‐A receptor subtypes have a defined localization that presumably reflects their physiological role. A picture is beginning to emerge of the properties conferred to receptor subtypes by the different subunits; these include different functional properties, differential modulation by protein kinases, and the targeting to different membrane compartments. These properties presumably underlie the different physiological roles of the various receptor subtypes. Recently we have identified a further member of the GABA‐A receptor gene family, which we have termed θ, which appears to be most closely related to the β subunits. The structure, function, and distribution of θ‐containing receptors, and receptors containing the recently reported ɛ subunit, are described.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>10414349</pmid><doi>10.1111/j.1749-6632.1999.tb11341.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 1999-04, Vol.868 (1), p.645-653
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_69901320
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Benzodiazepines - metabolism
Binding Sites
Chromosomes, Human - genetics
Conserved Sequence
gamma-Aminobutyric Acid - metabolism
Humans
Ion Channel Gating
Models, Molecular
Picrotoxin - metabolism
Receptors, GABA-A - chemistry
Receptors, GABA-A - classification
Receptors, GABA-A - genetics
Sequence Homology, Amino Acid
title Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20and%20Functional%20Diversity%20of%20the%20Expanding%20GABA-A%20Receptor%20Gene%20Family&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=WHITING,%20PAUL%20J.&rft.date=1999-04&rft.volume=868&rft.issue=1&rft.spage=645&rft.epage=653&rft.pages=645-653&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.1999.tb11341.x&rft_dat=%3Cproquest_cross%3E69901320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69901320&rft_id=info:pmid/10414349&rfr_iscdi=true