Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor
The design, development, and application of a fluorescent fiber-optic immunosensor (FFOI) procedure for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region is reported. The technique was developed through the combined use of fiber-optics, semiconductor laser exci...
Gespeichert in:
Veröffentlicht in: | Journal of immunological methods 1999-06, Vol.226 (1), p.119-128 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Journal of immunological methods |
container_volume | 226 |
creator | Daneshvar, M.I Peralta, J.M Casay, G.A Narayanan, N Evans, Lawrence Patonay, G Strekowski, L |
description | The design, development, and application of a fluorescent fiber-optic immunosensor (FFOI) procedure for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region is reported. The technique was developed through the combined use of fiber-optics, semiconductor laser excitation, fluorescence detection, NIR dye, and immunochemical techniques. The antibody is immobilized on the FFOI's sensing tip and utilized as a recognition component for trace amounts of specific antigen. The FFOI is constructed to utilize antibody sandwich technique. Three individual immunoassays are reported. The first two assays utilize the FFOI and NN382, a commercial NIR dye, for the detection of human immunoglobulin G (IgG). In these assays, goat anti-human IgG antibody (GAHG) is immobilized on the sensitive terminal of the FFOI followed by the exposure of the antibody-coated terminal to human IgG. The probe is then introduced to GAHG labeled with NN382, generating a signal. The third assay utilizes the FFOI for the detection of trace amounts of
Legionella pneumophila serogroup 1 (LPS1). In this assay, rabbit anti-LPS1 antibody is immobilized on the sensitive terminal of the FFOI followed by exposure to LPS1. The antigen-coated probe is then treated with monoclonal anti-LPS1 antibody followed by incubation with GAHG labeled with NN382. The assays are optimized to detect the corresponding antigen via the NIR–FFOI. Typical measurements are performed in 10–15 min. A 780-nm semiconductor laser provides the excitation of the immune complex and the resulting emission is detected by a 820-nm silicon photodiode detector. The intensity of the resulting fluorescence is directly proportional to the concentration of the antigen. Solutions of IgG and LPS1 with concentrations as low as 10
−11 M and 0.5 ng/ml, respectively, have been detected with a minimum interference. |
doi_str_mv | 10.1016/S0022-1759(99)00050-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69890371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022175999000502</els_id><sourcerecordid>69890371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ebb56ddfd911039d4fc4084248c6db1de6b9d7b3eaef6e812a2a3fe7f6fa98dd3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmCrArVL4ScU-YAqOATGTmLHp6oqn1IlDrRHZDn2uBgl9mInlfj3eLsr4NaTL8-MR-9LyBmDtwyYePcNgPOGyV69VuoNAPTQ8COyYYPkjVTQPyGbv-SEPCvlZ0UMBByTEwYdAyXlhnx_jwvaJaRIk6djSHOa0K4TFhoiXX4gjWhyE6LPJqOjZVt1NhPNeLcbug-GGurDiLlJ2yVYGuZ5jalgLCk_J0-9mQq-OLyn5Pbjh5urz831109fri6vG9sNcmlwHHvhnHeKMWiV67ztYOh4N1jhRuZQjMrJsUWDXuDAuOGm9Si98EYNzrWn5Hy_d5vTrxXLoudQLE6TiZjWooUaFLSSPQqZ5B2oHirs99DmVEpGr7c5zCb_1gz0rgD9UIDepauV0g8FaF7nXh4-WMcZ3X9T-8QreHUAplgz1VijDeWfGwTUOyu72DOssd0HzLrYgNGiC7k2oF0Kj1zyB0zmo8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17240950</pqid></control><display><type>article</type><title>Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Daneshvar, M.I ; Peralta, J.M ; Casay, G.A ; Narayanan, N ; Evans, Lawrence ; Patonay, G ; Strekowski, L</creator><creatorcontrib>Daneshvar, M.I ; Peralta, J.M ; Casay, G.A ; Narayanan, N ; Evans, Lawrence ; Patonay, G ; Strekowski, L</creatorcontrib><description>The design, development, and application of a fluorescent fiber-optic immunosensor (FFOI) procedure for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region is reported. The technique was developed through the combined use of fiber-optics, semiconductor laser excitation, fluorescence detection, NIR dye, and immunochemical techniques. The antibody is immobilized on the FFOI's sensing tip and utilized as a recognition component for trace amounts of specific antigen. The FFOI is constructed to utilize antibody sandwich technique. Three individual immunoassays are reported. The first two assays utilize the FFOI and NN382, a commercial NIR dye, for the detection of human immunoglobulin G (IgG). In these assays, goat anti-human IgG antibody (GAHG) is immobilized on the sensitive terminal of the FFOI followed by the exposure of the antibody-coated terminal to human IgG. The probe is then introduced to GAHG labeled with NN382, generating a signal. The third assay utilizes the FFOI for the detection of trace amounts of
Legionella pneumophila serogroup 1 (LPS1). In this assay, rabbit anti-LPS1 antibody is immobilized on the sensitive terminal of the FFOI followed by exposure to LPS1. The antigen-coated probe is then treated with monoclonal anti-LPS1 antibody followed by incubation with GAHG labeled with NN382. The assays are optimized to detect the corresponding antigen via the NIR–FFOI. Typical measurements are performed in 10–15 min. A 780-nm semiconductor laser provides the excitation of the immune complex and the resulting emission is detected by a 820-nm silicon photodiode detector. The intensity of the resulting fluorescence is directly proportional to the concentration of the antigen. Solutions of IgG and LPS1 with concentrations as low as 10
−11 M and 0.5 ng/ml, respectively, have been detected with a minimum interference.</description><identifier>ISSN: 0022-1759</identifier><identifier>EISSN: 1872-7905</identifier><identifier>DOI: 10.1016/S0022-1759(99)00050-2</identifier><identifier>PMID: 10410977</identifier><identifier>CODEN: JIMMBG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Antigen-Antibody Reactions ; Antigens, Bacterial - analysis ; Biological and medical sciences ; Biosensing Techniques - methods ; Biotechnology ; Evaluation Studies as Topic ; Fiber Optic Technology ; Fiber-optic ; Fluorescent ; Fluorescent Antibody Technique ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Health. Pharmaceutical industry ; Humans ; Immunoassay ; Immunoglobulin G - analysis ; Immunological technics applied to diagnosis ; Immunosensor ; Industrial applications and implications. Economical aspects ; Legionella ; Legionella pneumophila - immunology ; Light ; Molecular immunology ; Near-infrared ; Nerve Tissue Proteins - immunology ; Optical Fibers ; Polystyrenes ; Rabbits ; Sensitivity and Specificity ; Spectroscopy, Near-Infrared - methods ; Techniques</subject><ispartof>Journal of immunological methods, 1999-06, Vol.226 (1), p.119-128</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ebb56ddfd911039d4fc4084248c6db1de6b9d7b3eaef6e812a2a3fe7f6fa98dd3</citedby><cites>FETCH-LOGICAL-c487t-ebb56ddfd911039d4fc4084248c6db1de6b9d7b3eaef6e812a2a3fe7f6fa98dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-1759(99)00050-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1860713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10410977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daneshvar, M.I</creatorcontrib><creatorcontrib>Peralta, J.M</creatorcontrib><creatorcontrib>Casay, G.A</creatorcontrib><creatorcontrib>Narayanan, N</creatorcontrib><creatorcontrib>Evans, Lawrence</creatorcontrib><creatorcontrib>Patonay, G</creatorcontrib><creatorcontrib>Strekowski, L</creatorcontrib><title>Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor</title><title>Journal of immunological methods</title><addtitle>J Immunol Methods</addtitle><description>The design, development, and application of a fluorescent fiber-optic immunosensor (FFOI) procedure for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region is reported. The technique was developed through the combined use of fiber-optics, semiconductor laser excitation, fluorescence detection, NIR dye, and immunochemical techniques. The antibody is immobilized on the FFOI's sensing tip and utilized as a recognition component for trace amounts of specific antigen. The FFOI is constructed to utilize antibody sandwich technique. Three individual immunoassays are reported. The first two assays utilize the FFOI and NN382, a commercial NIR dye, for the detection of human immunoglobulin G (IgG). In these assays, goat anti-human IgG antibody (GAHG) is immobilized on the sensitive terminal of the FFOI followed by the exposure of the antibody-coated terminal to human IgG. The probe is then introduced to GAHG labeled with NN382, generating a signal. The third assay utilizes the FFOI for the detection of trace amounts of
Legionella pneumophila serogroup 1 (LPS1). In this assay, rabbit anti-LPS1 antibody is immobilized on the sensitive terminal of the FFOI followed by exposure to LPS1. The antigen-coated probe is then treated with monoclonal anti-LPS1 antibody followed by incubation with GAHG labeled with NN382. The assays are optimized to detect the corresponding antigen via the NIR–FFOI. Typical measurements are performed in 10–15 min. A 780-nm semiconductor laser provides the excitation of the immune complex and the resulting emission is detected by a 820-nm silicon photodiode detector. The intensity of the resulting fluorescence is directly proportional to the concentration of the antigen. Solutions of IgG and LPS1 with concentrations as low as 10
−11 M and 0.5 ng/ml, respectively, have been detected with a minimum interference.</description><subject>Animals</subject><subject>Antigen-Antibody Reactions</subject><subject>Antigens, Bacterial - analysis</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biotechnology</subject><subject>Evaluation Studies as Topic</subject><subject>Fiber Optic Technology</subject><subject>Fiber-optic</subject><subject>Fluorescent</subject><subject>Fluorescent Antibody Technique</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Health. Pharmaceutical industry</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Immunoglobulin G - analysis</subject><subject>Immunological technics applied to diagnosis</subject><subject>Immunosensor</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Legionella</subject><subject>Legionella pneumophila - immunology</subject><subject>Light</subject><subject>Molecular immunology</subject><subject>Near-infrared</subject><subject>Nerve Tissue Proteins - immunology</subject><subject>Optical Fibers</subject><subject>Polystyrenes</subject><subject>Rabbits</subject><subject>Sensitivity and Specificity</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Techniques</subject><issn>0022-1759</issn><issn>1872-7905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmCrArVL4ScU-YAqOATGTmLHp6oqn1IlDrRHZDn2uBgl9mInlfj3eLsr4NaTL8-MR-9LyBmDtwyYePcNgPOGyV69VuoNAPTQ8COyYYPkjVTQPyGbv-SEPCvlZ0UMBByTEwYdAyXlhnx_jwvaJaRIk6djSHOa0K4TFhoiXX4gjWhyE6LPJqOjZVt1NhPNeLcbug-GGurDiLlJ2yVYGuZ5jalgLCk_J0-9mQq-OLyn5Pbjh5urz831109fri6vG9sNcmlwHHvhnHeKMWiV67ztYOh4N1jhRuZQjMrJsUWDXuDAuOGm9Si98EYNzrWn5Hy_d5vTrxXLoudQLE6TiZjWooUaFLSSPQqZ5B2oHirs99DmVEpGr7c5zCb_1gz0rgD9UIDepauV0g8FaF7nXh4-WMcZ3X9T-8QreHUAplgz1VijDeWfGwTUOyu72DOssd0HzLrYgNGiC7k2oF0Kj1zyB0zmo8U</recordid><startdate>19990624</startdate><enddate>19990624</enddate><creator>Daneshvar, M.I</creator><creator>Peralta, J.M</creator><creator>Casay, G.A</creator><creator>Narayanan, N</creator><creator>Evans, Lawrence</creator><creator>Patonay, G</creator><creator>Strekowski, L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19990624</creationdate><title>Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor</title><author>Daneshvar, M.I ; Peralta, J.M ; Casay, G.A ; Narayanan, N ; Evans, Lawrence ; Patonay, G ; Strekowski, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ebb56ddfd911039d4fc4084248c6db1de6b9d7b3eaef6e812a2a3fe7f6fa98dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Antigen-Antibody Reactions</topic><topic>Antigens, Bacterial - analysis</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biotechnology</topic><topic>Evaluation Studies as Topic</topic><topic>Fiber Optic Technology</topic><topic>Fiber-optic</topic><topic>Fluorescent</topic><topic>Fluorescent Antibody Technique</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Health. Pharmaceutical industry</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Immunoglobulin G - analysis</topic><topic>Immunological technics applied to diagnosis</topic><topic>Immunosensor</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Legionella</topic><topic>Legionella pneumophila - immunology</topic><topic>Light</topic><topic>Molecular immunology</topic><topic>Near-infrared</topic><topic>Nerve Tissue Proteins - immunology</topic><topic>Optical Fibers</topic><topic>Polystyrenes</topic><topic>Rabbits</topic><topic>Sensitivity and Specificity</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daneshvar, M.I</creatorcontrib><creatorcontrib>Peralta, J.M</creatorcontrib><creatorcontrib>Casay, G.A</creatorcontrib><creatorcontrib>Narayanan, N</creatorcontrib><creatorcontrib>Evans, Lawrence</creatorcontrib><creatorcontrib>Patonay, G</creatorcontrib><creatorcontrib>Strekowski, L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of immunological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daneshvar, M.I</au><au>Peralta, J.M</au><au>Casay, G.A</au><au>Narayanan, N</au><au>Evans, Lawrence</au><au>Patonay, G</au><au>Strekowski, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor</atitle><jtitle>Journal of immunological methods</jtitle><addtitle>J Immunol Methods</addtitle><date>1999-06-24</date><risdate>1999</risdate><volume>226</volume><issue>1</issue><spage>119</spage><epage>128</epage><pages>119-128</pages><issn>0022-1759</issn><eissn>1872-7905</eissn><coden>JIMMBG</coden><abstract>The design, development, and application of a fluorescent fiber-optic immunosensor (FFOI) procedure for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region is reported. The technique was developed through the combined use of fiber-optics, semiconductor laser excitation, fluorescence detection, NIR dye, and immunochemical techniques. The antibody is immobilized on the FFOI's sensing tip and utilized as a recognition component for trace amounts of specific antigen. The FFOI is constructed to utilize antibody sandwich technique. Three individual immunoassays are reported. The first two assays utilize the FFOI and NN382, a commercial NIR dye, for the detection of human immunoglobulin G (IgG). In these assays, goat anti-human IgG antibody (GAHG) is immobilized on the sensitive terminal of the FFOI followed by the exposure of the antibody-coated terminal to human IgG. The probe is then introduced to GAHG labeled with NN382, generating a signal. The third assay utilizes the FFOI for the detection of trace amounts of
Legionella pneumophila serogroup 1 (LPS1). In this assay, rabbit anti-LPS1 antibody is immobilized on the sensitive terminal of the FFOI followed by exposure to LPS1. The antigen-coated probe is then treated with monoclonal anti-LPS1 antibody followed by incubation with GAHG labeled with NN382. The assays are optimized to detect the corresponding antigen via the NIR–FFOI. Typical measurements are performed in 10–15 min. A 780-nm semiconductor laser provides the excitation of the immune complex and the resulting emission is detected by a 820-nm silicon photodiode detector. The intensity of the resulting fluorescence is directly proportional to the concentration of the antigen. Solutions of IgG and LPS1 with concentrations as low as 10
−11 M and 0.5 ng/ml, respectively, have been detected with a minimum interference.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10410977</pmid><doi>10.1016/S0022-1759(99)00050-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1759 |
ispartof | Journal of immunological methods, 1999-06, Vol.226 (1), p.119-128 |
issn | 0022-1759 1872-7905 |
language | eng |
recordid | cdi_proquest_miscellaneous_69890371 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Antigen-Antibody Reactions Antigens, Bacterial - analysis Biological and medical sciences Biosensing Techniques - methods Biotechnology Evaluation Studies as Topic Fiber Optic Technology Fiber-optic Fluorescent Fluorescent Antibody Technique Fundamental and applied biological sciences. Psychology Fundamental immunology Health. Pharmaceutical industry Humans Immunoassay Immunoglobulin G - analysis Immunological technics applied to diagnosis Immunosensor Industrial applications and implications. Economical aspects Legionella Legionella pneumophila - immunology Light Molecular immunology Near-infrared Nerve Tissue Proteins - immunology Optical Fibers Polystyrenes Rabbits Sensitivity and Specificity Spectroscopy, Near-Infrared - methods Techniques |
title | Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20biomolecules%20in%20the%20near-infrared%20spectral%20region%20via%20a%20fiber-optic%20immunosensor&rft.jtitle=Journal%20of%20immunological%20methods&rft.au=Daneshvar,%20M.I&rft.date=1999-06-24&rft.volume=226&rft.issue=1&rft.spage=119&rft.epage=128&rft.pages=119-128&rft.issn=0022-1759&rft.eissn=1872-7905&rft.coden=JIMMBG&rft_id=info:doi/10.1016/S0022-1759(99)00050-2&rft_dat=%3Cproquest_cross%3E69890371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17240950&rft_id=info:pmid/10410977&rft_els_id=S0022175999000502&rfr_iscdi=true |