Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water

Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (49), p.19136-19141
Hauptverfasser: Rodgers, Jocelyn M, Weeks, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19141
container_issue 49
container_start_page 19136
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Rodgers, Jocelyn M
Weeks, John D
description Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.
doi_str_mv 10.1073/pnas.0807623105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69870877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465611</jstor_id><sourcerecordid>25465611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</originalsourceid><addsrcrecordid>eNqF0c2L1DAYBvAiijuunj2pxYPgobv5aj4ugix-LCx40D2HNB_dDJmkJq06_70pM-yoF08NvL88zcvTNM8huICA4cspqnIBOGAUYQj6B80GAgE7SgR42GwAQKzjBJGz5kkpWwCA6Dl43JxBASrBcNPo6zjbPAW1b5NrQ9IqtHd7k9NoYzekaHwcWxVNHcWxyyqO1rTGTymo3LqUtS2tj23xuyWo2adY1hydovOxyp-qpj9tHjkVin12_J43tx8_fLv63N18-XR99f6mUz2hc6cFBNANiDgrLOcaazNgbQdCoOJWD9ix9dUDc5YTahQ1iFJWjxhSqrTB5827Q-60DDtrtI1zVkFO2e9U3sukvPx7Ev2dHNMPiSgkDPEa8OYYkNP3xZZZ7nzRNgQVbVqKpIIzwBmr8PU_cJuWHOtyEgGIBUEMVHR5QDqnUrJ19y-BQK7tybU9eWqv3nj55wInf6yrgrdHsN48xfWSiKogptItIcz211xt-x9byYsD2ZY55XuDah09hevvXh3mTiWpxuyLvP26LghgT0XfI_wblXTDjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394270</pqid></control><display><type>article</type><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodgers, Jocelyn M ; Weeks, John D</creator><creatorcontrib>Rodgers, Jocelyn M ; Weeks, John D</creatorcontrib><description>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0807623105</identifier><identifier>PMID: 19064931</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Charge density ; Computer Simulation ; Electric fields ; Electrical potential ; Electromagnetic Fields ; Electrostatics ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Hydrophobic and Hydrophilic Interactions ; Ions - chemistry ; Liquids ; Models, Chemical ; Molecular interactions ; Molecules ; Physical Sciences ; Simulation ; Static Electricity ; Theory ; Truncation ; Water ; Water - chemistry ; Water treatment</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19136-19141</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</citedby><cites>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465611$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465611$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19064931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, Jocelyn M</creatorcontrib><creatorcontrib>Weeks, John D</creatorcontrib><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</description><subject>Biological Sciences</subject><subject>Charge density</subject><subject>Computer Simulation</subject><subject>Electric fields</subject><subject>Electrical potential</subject><subject>Electromagnetic Fields</subject><subject>Electrostatics</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Ions - chemistry</subject><subject>Liquids</subject><subject>Models, Chemical</subject><subject>Molecular interactions</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Theory</subject><subject>Truncation</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water treatment</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2L1DAYBvAiijuunj2pxYPgobv5aj4ugix-LCx40D2HNB_dDJmkJq06_70pM-yoF08NvL88zcvTNM8huICA4cspqnIBOGAUYQj6B80GAgE7SgR42GwAQKzjBJGz5kkpWwCA6Dl43JxBASrBcNPo6zjbPAW1b5NrQ9IqtHd7k9NoYzekaHwcWxVNHcWxyyqO1rTGTymo3LqUtS2tj23xuyWo2adY1hydovOxyp-qpj9tHjkVin12_J43tx8_fLv63N18-XR99f6mUz2hc6cFBNANiDgrLOcaazNgbQdCoOJWD9ix9dUDc5YTahQ1iFJWjxhSqrTB5827Q-60DDtrtI1zVkFO2e9U3sukvPx7Ev2dHNMPiSgkDPEa8OYYkNP3xZZZ7nzRNgQVbVqKpIIzwBmr8PU_cJuWHOtyEgGIBUEMVHR5QDqnUrJ19y-BQK7tybU9eWqv3nj55wInf6yrgrdHsN48xfWSiKogptItIcz211xt-x9byYsD2ZY55XuDah09hevvXh3mTiWpxuyLvP26LghgT0XfI_wblXTDjg</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Rodgers, Jocelyn M</creator><creator>Weeks, John D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081209</creationdate><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><author>Rodgers, Jocelyn M ; Weeks, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Sciences</topic><topic>Charge density</topic><topic>Computer Simulation</topic><topic>Electric fields</topic><topic>Electrical potential</topic><topic>Electromagnetic Fields</topic><topic>Electrostatics</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Ions - chemistry</topic><topic>Liquids</topic><topic>Models, Chemical</topic><topic>Molecular interactions</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Theory</topic><topic>Truncation</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Jocelyn M</creatorcontrib><creatorcontrib>Weeks, John D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Jocelyn M</au><au>Weeks, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-09</date><risdate>2008</risdate><volume>105</volume><issue>49</issue><spage>19136</spage><epage>19141</epage><pages>19136-19141</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19064931</pmid><doi>10.1073/pnas.0807623105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19136-19141
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69870877
source Jstor Complete Legacy; MEDLINE; PMC (PubMed Central); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Charge density
Computer Simulation
Electric fields
Electrical potential
Electromagnetic Fields
Electrostatics
Hydrogen
Hydrogen Bonding
Hydrogen bonds
Hydrophobic and Hydrophilic Interactions
Ions - chemistry
Liquids
Models, Chemical
Molecular interactions
Molecules
Physical Sciences
Simulation
Static Electricity
Theory
Truncation
Water
Water - chemistry
Water treatment
title Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20local%20hydrogen-bonding%20and%20long-ranged%20dipolar%20forces%20in%20simulations%20of%20confined%20water&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rodgers,%20Jocelyn%20M&rft.date=2008-12-09&rft.volume=105&rft.issue=49&rft.spage=19136&rft.epage=19141&rft.pages=19136-19141&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0807623105&rft_dat=%3Cjstor_proqu%3E25465611%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201394270&rft_id=info:pmid/19064931&rft_jstor_id=25465611&rfr_iscdi=true