Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water
Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for ele...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (49), p.19136-19141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19141 |
---|---|
container_issue | 49 |
container_start_page | 19136 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Rodgers, Jocelyn M Weeks, John D |
description | Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water. |
doi_str_mv | 10.1073/pnas.0807623105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69870877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465611</jstor_id><sourcerecordid>25465611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</originalsourceid><addsrcrecordid>eNqF0c2L1DAYBvAiijuunj2pxYPgobv5aj4ugix-LCx40D2HNB_dDJmkJq06_70pM-yoF08NvL88zcvTNM8huICA4cspqnIBOGAUYQj6B80GAgE7SgR42GwAQKzjBJGz5kkpWwCA6Dl43JxBASrBcNPo6zjbPAW1b5NrQ9IqtHd7k9NoYzekaHwcWxVNHcWxyyqO1rTGTymo3LqUtS2tj23xuyWo2adY1hydovOxyp-qpj9tHjkVin12_J43tx8_fLv63N18-XR99f6mUz2hc6cFBNANiDgrLOcaazNgbQdCoOJWD9ix9dUDc5YTahQ1iFJWjxhSqrTB5827Q-60DDtrtI1zVkFO2e9U3sukvPx7Ev2dHNMPiSgkDPEa8OYYkNP3xZZZ7nzRNgQVbVqKpIIzwBmr8PU_cJuWHOtyEgGIBUEMVHR5QDqnUrJ19y-BQK7tybU9eWqv3nj55wInf6yrgrdHsN48xfWSiKogptItIcz211xt-x9byYsD2ZY55XuDah09hevvXh3mTiWpxuyLvP26LghgT0XfI_wblXTDjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394270</pqid></control><display><type>article</type><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodgers, Jocelyn M ; Weeks, John D</creator><creatorcontrib>Rodgers, Jocelyn M ; Weeks, John D</creatorcontrib><description>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0807623105</identifier><identifier>PMID: 19064931</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Charge density ; Computer Simulation ; Electric fields ; Electrical potential ; Electromagnetic Fields ; Electrostatics ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Hydrophobic and Hydrophilic Interactions ; Ions - chemistry ; Liquids ; Models, Chemical ; Molecular interactions ; Molecules ; Physical Sciences ; Simulation ; Static Electricity ; Theory ; Truncation ; Water ; Water - chemistry ; Water treatment</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19136-19141</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</citedby><cites>FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465611$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465611$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19064931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, Jocelyn M</creatorcontrib><creatorcontrib>Weeks, John D</creatorcontrib><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</description><subject>Biological Sciences</subject><subject>Charge density</subject><subject>Computer Simulation</subject><subject>Electric fields</subject><subject>Electrical potential</subject><subject>Electromagnetic Fields</subject><subject>Electrostatics</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Ions - chemistry</subject><subject>Liquids</subject><subject>Models, Chemical</subject><subject>Molecular interactions</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Theory</subject><subject>Truncation</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water treatment</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2L1DAYBvAiijuunj2pxYPgobv5aj4ugix-LCx40D2HNB_dDJmkJq06_70pM-yoF08NvL88zcvTNM8huICA4cspqnIBOGAUYQj6B80GAgE7SgR42GwAQKzjBJGz5kkpWwCA6Dl43JxBASrBcNPo6zjbPAW1b5NrQ9IqtHd7k9NoYzekaHwcWxVNHcWxyyqO1rTGTymo3LqUtS2tj23xuyWo2adY1hydovOxyp-qpj9tHjkVin12_J43tx8_fLv63N18-XR99f6mUz2hc6cFBNANiDgrLOcaazNgbQdCoOJWD9ix9dUDc5YTahQ1iFJWjxhSqrTB5827Q-60DDtrtI1zVkFO2e9U3sukvPx7Ev2dHNMPiSgkDPEa8OYYkNP3xZZZ7nzRNgQVbVqKpIIzwBmr8PU_cJuWHOtyEgGIBUEMVHR5QDqnUrJ19y-BQK7tybU9eWqv3nj55wInf6yrgrdHsN48xfWSiKogptItIcz211xt-x9byYsD2ZY55XuDah09hevvXh3mTiWpxuyLvP26LghgT0XfI_wblXTDjg</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Rodgers, Jocelyn M</creator><creator>Weeks, John D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081209</creationdate><title>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</title><author>Rodgers, Jocelyn M ; Weeks, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a546t-c9101fb24fe9e88c3cdb3ceb441a8ecb3f70649b7fe846da6d26678463166acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Sciences</topic><topic>Charge density</topic><topic>Computer Simulation</topic><topic>Electric fields</topic><topic>Electrical potential</topic><topic>Electromagnetic Fields</topic><topic>Electrostatics</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Ions - chemistry</topic><topic>Liquids</topic><topic>Models, Chemical</topic><topic>Molecular interactions</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Theory</topic><topic>Truncation</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Jocelyn M</creatorcontrib><creatorcontrib>Weeks, John D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Jocelyn M</au><au>Weeks, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-09</date><risdate>2008</risdate><volume>105</volume><issue>49</issue><spage>19136</spage><epage>19141</epage><pages>19136-19141</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations--water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19064931</pmid><doi>10.1073/pnas.0807623105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19136-19141 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_69870877 |
source | Jstor Complete Legacy; MEDLINE; PMC (PubMed Central); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Charge density Computer Simulation Electric fields Electrical potential Electromagnetic Fields Electrostatics Hydrogen Hydrogen Bonding Hydrogen bonds Hydrophobic and Hydrophilic Interactions Ions - chemistry Liquids Models, Chemical Molecular interactions Molecules Physical Sciences Simulation Static Electricity Theory Truncation Water Water - chemistry Water treatment |
title | Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20local%20hydrogen-bonding%20and%20long-ranged%20dipolar%20forces%20in%20simulations%20of%20confined%20water&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rodgers,%20Jocelyn%20M&rft.date=2008-12-09&rft.volume=105&rft.issue=49&rft.spage=19136&rft.epage=19141&rft.pages=19136-19141&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0807623105&rft_dat=%3Cjstor_proqu%3E25465611%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201394270&rft_id=info:pmid/19064931&rft_jstor_id=25465611&rfr_iscdi=true |