Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane

Voltage-dependent K⁺ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (49), p.19276-19281
Hauptverfasser: Schmidt, Daniel, MacKinnon, Roderick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19281
container_issue 49
container_start_page 19276
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Schmidt, Daniel
MacKinnon, Roderick
description Voltage-dependent K⁺ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K⁺ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.
doi_str_mv 10.1073/pnas.0810187105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69870745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465635</jstor_id><sourcerecordid>25465635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-e1dacff3ad7b187f0a695878c9d7f3a8d4815b0db72deaea6a2e4b17514fefe03</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEotvCmRNgcUDikHac2HFyQUIV_0QlDlCulhNPdr3K2ovtrNpTxWvxODwJTrPqAhdOlmd-8818-rLsCYVTCqI821oVTqGmQGtBgd_LFhQamlesgfvZAqAQec0KdpQdh7AGgIbX8DA7og1wSPOL7OabG6JaYq5xi1ajjeTTrx8_SbdS1uJAlioauyTKarKbSRLQBudJdFfG3n5MNDsTr8ksQZwlcYVkg5OG6dRAQlQRietv64PZGp26m9Yri4-yB70aAj7evyfZ5bu3X88_5Bef3388f3ORd7xuYo5Uq67vS6VFm6z2oKpkRdRdo0Wq1prVlLegW1FoVKgqVSBrqeCU9dgjlCfZ61l3O7Yb1F0y6tUgt95slL-WThn5d8ealVy6nSwqygQvksDLvYB330cMUW5M6HAYkgk3Blk1tQDBeAJf_AOu3ehtMicLoCXjjWAJOpuhzrsQPPZ3l1CQU7JySlYekk0Tz_40cOD3USaA7IFp8iDHJWsSVYgqIa_-g8h-HIaIVzGxT2d2HaLzd3DBWcWrcrrn-dzvlZNq6U2Ql18mg0B5yiZt-w0L3c-Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201345974</pqid></control><display><type>article</type><title>Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmidt, Daniel ; MacKinnon, Roderick</creator><creatorcontrib>Schmidt, Daniel ; MacKinnon, Roderick</creatorcontrib><description>Voltage-dependent K⁺ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K⁺ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0810187105</identifier><identifier>PMID: 19050073</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Binding sites ; Biological Sciences ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell membranes ; Chemical composition ; Chimeras ; Electric potential ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Lipid Bilayers - metabolism ; Lipids ; Membranes ; Models, Biological ; Oocytes ; Oocytes - physiology ; P branes ; Patch-Clamp Techniques ; Peptides - pharmacology ; Pipettes ; Potassium ; Potassium Channels, Voltage-Gated - physiology ; Recombinant Fusion Proteins - physiology ; Sensors ; Spider Venoms - pharmacology ; Stress, Mechanical ; Studies ; Suction ; Toxins ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19276-19281</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-e1dacff3ad7b187f0a695878c9d7f3a8d4815b0db72deaea6a2e4b17514fefe03</citedby><cites>FETCH-LOGICAL-c589t-e1dacff3ad7b187f0a695878c9d7f3a8d4815b0db72deaea6a2e4b17514fefe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465635$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465635$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19050073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Daniel</creatorcontrib><creatorcontrib>MacKinnon, Roderick</creatorcontrib><title>Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Voltage-dependent K⁺ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K⁺ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Chemical composition</subject><subject>Chimeras</subject><subject>Electric potential</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Oocytes</subject><subject>Oocytes - physiology</subject><subject>P branes</subject><subject>Patch-Clamp Techniques</subject><subject>Peptides - pharmacology</subject><subject>Pipettes</subject><subject>Potassium</subject><subject>Potassium Channels, Voltage-Gated - physiology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Sensors</subject><subject>Spider Venoms - pharmacology</subject><subject>Stress, Mechanical</subject><subject>Studies</subject><subject>Suction</subject><subject>Toxins</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiMEotvCmRNgcUDikHac2HFyQUIV_0QlDlCulhNPdr3K2ovtrNpTxWvxODwJTrPqAhdOlmd-8818-rLsCYVTCqI821oVTqGmQGtBgd_LFhQamlesgfvZAqAQec0KdpQdh7AGgIbX8DA7og1wSPOL7OabG6JaYq5xi1ajjeTTrx8_SbdS1uJAlioauyTKarKbSRLQBudJdFfG3n5MNDsTr8ksQZwlcYVkg5OG6dRAQlQRietv64PZGp26m9Yri4-yB70aAj7evyfZ5bu3X88_5Bef3388f3ORd7xuYo5Uq67vS6VFm6z2oKpkRdRdo0Wq1prVlLegW1FoVKgqVSBrqeCU9dgjlCfZ61l3O7Yb1F0y6tUgt95slL-WThn5d8ealVy6nSwqygQvksDLvYB330cMUW5M6HAYkgk3Blk1tQDBeAJf_AOu3ehtMicLoCXjjWAJOpuhzrsQPPZ3l1CQU7JySlYekk0Tz_40cOD3USaA7IFp8iDHJWsSVYgqIa_-g8h-HIaIVzGxT2d2HaLzd3DBWcWrcrrn-dzvlZNq6U2Ql18mg0B5yiZt-w0L3c-Z</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Schmidt, Daniel</creator><creator>MacKinnon, Roderick</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081209</creationdate><title>Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane</title><author>Schmidt, Daniel ; MacKinnon, Roderick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-e1dacff3ad7b187f0a695878c9d7f3a8d4815b0db72deaea6a2e4b17514fefe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Chemical composition</topic><topic>Chimeras</topic><topic>Electric potential</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Oocytes</topic><topic>Oocytes - physiology</topic><topic>P branes</topic><topic>Patch-Clamp Techniques</topic><topic>Peptides - pharmacology</topic><topic>Pipettes</topic><topic>Potassium</topic><topic>Potassium Channels, Voltage-Gated - physiology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Sensors</topic><topic>Spider Venoms - pharmacology</topic><topic>Stress, Mechanical</topic><topic>Studies</topic><topic>Suction</topic><topic>Toxins</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Daniel</creatorcontrib><creatorcontrib>MacKinnon, Roderick</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Daniel</au><au>MacKinnon, Roderick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-09</date><risdate>2008</risdate><volume>105</volume><issue>49</issue><spage>19276</spage><epage>19281</epage><pages>19276-19281</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Voltage-dependent K⁺ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K⁺ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19050073</pmid><doi>10.1073/pnas.0810187105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19276-19281
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69870745
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Binding sites
Biological Sciences
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell membranes
Chemical composition
Chimeras
Electric potential
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Lipid Bilayers - metabolism
Lipids
Membranes
Models, Biological
Oocytes
Oocytes - physiology
P branes
Patch-Clamp Techniques
Peptides - pharmacology
Pipettes
Potassium
Potassium Channels, Voltage-Gated - physiology
Recombinant Fusion Proteins - physiology
Sensors
Spider Venoms - pharmacology
Stress, Mechanical
Studies
Suction
Toxins
Xenopus laevis
title Voltage-dependent K⁺ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-dependent%20K%E2%81%BA%20channel%20gating%20and%20voltage%20sensor%20toxin%20sensitivity%20depend%20on%20the%20mechanical%20state%20of%20the%20lipid%20membrane&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schmidt,%20Daniel&rft.date=2008-12-09&rft.volume=105&rft.issue=49&rft.spage=19276&rft.epage=19281&rft.pages=19276-19281&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0810187105&rft_dat=%3Cjstor_proqu%3E25465635%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201345974&rft_id=info:pmid/19050073&rft_jstor_id=25465635&rfr_iscdi=true