Identifying molecular markers associated with classification of genotypes by External Logistic Biplots

For characterization of genetic diversity in genotypes several molecular techniques, usually resulting in a binary data matrix, have been used. Despite the fact that in Cluster Analysis (CA) and Principal Coordinates Analysis (PCoA) the interpretation of the variables responsible for grouping is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2008-12, Vol.24 (24), p.2832-2838
Hauptverfasser: Demey, J. R., Vicente-Villardón, J. L., Galindo-Villardón, M. P., Zambrano, A. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2838
container_issue 24
container_start_page 2832
container_title Bioinformatics
container_volume 24
creator Demey, J. R.
Vicente-Villardón, J. L.
Galindo-Villardón, M. P.
Zambrano, A. Y.
description For characterization of genetic diversity in genotypes several molecular techniques, usually resulting in a binary data matrix, have been used. Despite the fact that in Cluster Analysis (CA) and Principal Coordinates Analysis (PCoA) the interpretation of the variables responsible for grouping is not straightforward, these methods are commonly used to classify genotypes using DNA molecular markers. In this article, we present a novel algorithm that uses a combination of PCoA, CA and Logistic Regression (LR), as a better way to interpret the variables (alleles or bands) associated to the classification of genotypes. The combination of three standard techniques with some new ideas about the geometry of the procedures, allows constructing an External Logistic Biplot (ELB) that helps in the interpretation of the variables responsible for the classification or ordination. An application of the method to study the genetic diversity of four populations from Africa, Asia and Europe, using the HapMap data is included. Availability: The Matlab code for implementing the methods may be obtained from the web site: http://biplot.usal.es. Contact: jhonny.demey@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btn552
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_69866250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn552</oup_id><sourcerecordid>1610597591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-7a31b8843a48901ef1913b58eb4565aa653f5ea635c44a34fd53c437c12742e13</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSNERR_wE0AWEuzS2rl2HC_pqNBWIxDiITQby_HYg0sSB9tRO_8ejzJqBZuysmV95z7OcVG8JPiUYAFnrfNusD70Kjkdz9o0MFY9KY4IrXFZYSae5jvUvKQNhsPiOMYbjBmhlD4rDkkjOMUcjgp7tTZDcnbrhg3qfWf01KmAehV-mRCRitFrp5JZo1uXfiLd5Rdnnc5d_YC8RRsz-LQdTUTtFl3cJRMG1aGl37iYB0Pnbux8is-LA6u6aF7sz5Pi2_uLr4vLcvnpw9Xi3bLUefpUcgWkbRoKijYCE2OJINCyxrSU1UypmoFlRtXANKUKqF0z0BS4JhWnlSFwUryd647B_55MTLJ3UZuuU4PxU5S1aOq6YvhREBgA5Vw8ClYYMKGCZ_D1P-CNn3ZmRElyV4EpoRliM6SDjzEYK8fgstlbSbDc5Sr_zlXOuWbdq33xqe3N-kG1DzIDb_aAilp1NqhBu3jPVVhkK8lubzxzfhr_u3c5S3Ki5u5elH-IrDlwJi9_rOT1arH6_kV8lJ_hDzce0gI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198690414</pqid></control><display><type>article</type><title>Identifying molecular markers associated with classification of genotypes by External Logistic Biplots</title><source>Oxford Journals Open Access Collection</source><creator>Demey, J. R. ; Vicente-Villardón, J. L. ; Galindo-Villardón, M. P. ; Zambrano, A. Y.</creator><creatorcontrib>Demey, J. R. ; Vicente-Villardón, J. L. ; Galindo-Villardón, M. P. ; Zambrano, A. Y.</creatorcontrib><description>For characterization of genetic diversity in genotypes several molecular techniques, usually resulting in a binary data matrix, have been used. Despite the fact that in Cluster Analysis (CA) and Principal Coordinates Analysis (PCoA) the interpretation of the variables responsible for grouping is not straightforward, these methods are commonly used to classify genotypes using DNA molecular markers. In this article, we present a novel algorithm that uses a combination of PCoA, CA and Logistic Regression (LR), as a better way to interpret the variables (alleles or bands) associated to the classification of genotypes. The combination of three standard techniques with some new ideas about the geometry of the procedures, allows constructing an External Logistic Biplot (ELB) that helps in the interpretation of the variables responsible for the classification or ordination. An application of the method to study the genetic diversity of four populations from Africa, Asia and Europe, using the HapMap data is included. Availability: The Matlab code for implementing the methods may be obtained from the web site: http://biplot.usal.es. Contact: jhonny.demey@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn552</identifier><identifier>PMID: 18974073</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Africa ; Algorithms ; Asia ; Biological and medical sciences ; Cluster Analysis ; Computational Biology - methods ; Europe ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetic Markers ; Genetic Variation ; Genotype ; Humans ; Logistic Models ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><ispartof>Bioinformatics, 2008-12, Vol.24 (24), p.2832-2838</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2009 INIST-CNRS</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-7a31b8843a48901ef1913b58eb4565aa653f5ea635c44a34fd53c437c12742e13</citedby><cites>FETCH-LOGICAL-c552t-7a31b8843a48901ef1913b58eb4565aa653f5ea635c44a34fd53c437c12742e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btn552$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20919110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18974073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demey, J. R.</creatorcontrib><creatorcontrib>Vicente-Villardón, J. L.</creatorcontrib><creatorcontrib>Galindo-Villardón, M. P.</creatorcontrib><creatorcontrib>Zambrano, A. Y.</creatorcontrib><title>Identifying molecular markers associated with classification of genotypes by External Logistic Biplots</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>For characterization of genetic diversity in genotypes several molecular techniques, usually resulting in a binary data matrix, have been used. Despite the fact that in Cluster Analysis (CA) and Principal Coordinates Analysis (PCoA) the interpretation of the variables responsible for grouping is not straightforward, these methods are commonly used to classify genotypes using DNA molecular markers. In this article, we present a novel algorithm that uses a combination of PCoA, CA and Logistic Regression (LR), as a better way to interpret the variables (alleles or bands) associated to the classification of genotypes. The combination of three standard techniques with some new ideas about the geometry of the procedures, allows constructing an External Logistic Biplot (ELB) that helps in the interpretation of the variables responsible for the classification or ordination. An application of the method to study the genetic diversity of four populations from Africa, Asia and Europe, using the HapMap data is included. Availability: The Matlab code for implementing the methods may be obtained from the web site: http://biplot.usal.es. Contact: jhonny.demey@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Africa</subject><subject>Algorithms</subject><subject>Asia</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Europe</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetic Markers</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhSNERR_wE0AWEuzS2rl2HC_pqNBWIxDiITQby_HYg0sSB9tRO_8ejzJqBZuysmV95z7OcVG8JPiUYAFnrfNusD70Kjkdz9o0MFY9KY4IrXFZYSae5jvUvKQNhsPiOMYbjBmhlD4rDkkjOMUcjgp7tTZDcnbrhg3qfWf01KmAehV-mRCRitFrp5JZo1uXfiLd5Rdnnc5d_YC8RRsz-LQdTUTtFl3cJRMG1aGl37iYB0Pnbux8is-LA6u6aF7sz5Pi2_uLr4vLcvnpw9Xi3bLUefpUcgWkbRoKijYCE2OJINCyxrSU1UypmoFlRtXANKUKqF0z0BS4JhWnlSFwUryd647B_55MTLJ3UZuuU4PxU5S1aOq6YvhREBgA5Vw8ClYYMKGCZ_D1P-CNn3ZmRElyV4EpoRliM6SDjzEYK8fgstlbSbDc5Sr_zlXOuWbdq33xqe3N-kG1DzIDb_aAilp1NqhBu3jPVVhkK8lubzxzfhr_u3c5S3Ki5u5elH-IrDlwJi9_rOT1arH6_kV8lJ_hDzce0gI</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Demey, J. R.</creator><creator>Vicente-Villardón, J. L.</creator><creator>Galindo-Villardón, M. P.</creator><creator>Zambrano, A. Y.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081215</creationdate><title>Identifying molecular markers associated with classification of genotypes by External Logistic Biplots</title><author>Demey, J. R. ; Vicente-Villardón, J. L. ; Galindo-Villardón, M. P. ; Zambrano, A. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-7a31b8843a48901ef1913b58eb4565aa653f5ea635c44a34fd53c437c12742e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Africa</topic><topic>Algorithms</topic><topic>Asia</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Europe</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetic Markers</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demey, J. R.</creatorcontrib><creatorcontrib>Vicente-Villardón, J. L.</creatorcontrib><creatorcontrib>Galindo-Villardón, M. P.</creatorcontrib><creatorcontrib>Zambrano, A. Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Demey, J. R.</au><au>Vicente-Villardón, J. L.</au><au>Galindo-Villardón, M. P.</au><au>Zambrano, A. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying molecular markers associated with classification of genotypes by External Logistic Biplots</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-12-15</date><risdate>2008</risdate><volume>24</volume><issue>24</issue><spage>2832</spage><epage>2838</epage><pages>2832-2838</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>For characterization of genetic diversity in genotypes several molecular techniques, usually resulting in a binary data matrix, have been used. Despite the fact that in Cluster Analysis (CA) and Principal Coordinates Analysis (PCoA) the interpretation of the variables responsible for grouping is not straightforward, these methods are commonly used to classify genotypes using DNA molecular markers. In this article, we present a novel algorithm that uses a combination of PCoA, CA and Logistic Regression (LR), as a better way to interpret the variables (alleles or bands) associated to the classification of genotypes. The combination of three standard techniques with some new ideas about the geometry of the procedures, allows constructing an External Logistic Biplot (ELB) that helps in the interpretation of the variables responsible for the classification or ordination. An application of the method to study the genetic diversity of four populations from Africa, Asia and Europe, using the HapMap data is included. Availability: The Matlab code for implementing the methods may be obtained from the web site: http://biplot.usal.es. Contact: jhonny.demey@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18974073</pmid><doi>10.1093/bioinformatics/btn552</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2008-12, Vol.24 (24), p.2832-2838
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_69866250
source Oxford Journals Open Access Collection
subjects Africa
Algorithms
Asia
Biological and medical sciences
Cluster Analysis
Computational Biology - methods
Europe
Fundamental and applied biological sciences. Psychology
General aspects
Genetic Markers
Genetic Variation
Genotype
Humans
Logistic Models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
title Identifying molecular markers associated with classification of genotypes by External Logistic Biplots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20molecular%20markers%20associated%20with%20classification%20of%20genotypes%20by%20External%20Logistic%20Biplots&rft.jtitle=Bioinformatics&rft.au=Demey,%20J.%20R.&rft.date=2008-12-15&rft.volume=24&rft.issue=24&rft.spage=2832&rft.epage=2838&rft.pages=2832-2838&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn552&rft_dat=%3Cproquest_TOX%3E1610597591%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198690414&rft_id=info:pmid/18974073&rft_oup_id=10.1093/bioinformatics/btn552&rfr_iscdi=true