Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India
Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of th...
Gespeichert in:
Veröffentlicht in: | American journal of hematology 1999-06, Vol.61 (2), p.120-125 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 2 |
container_start_page | 120 |
container_title | American journal of hematology |
container_volume | 61 |
creator | Gorakshakar, A.C. Pawar, A.R. Nadkarni, A.H. Lu, C.Y. Mohanty, D. Krishnamoorthy, R. Besmond, C. Colah, R.B. |
description | Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations.
We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time.
Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1096-8652(199906)61:2<120::AID-AJH8>3.0.CO;2-T |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69817243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69817243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3138-891dea91439b60211937030055259986b90eefa42bb9ce4b5e0dbc12f92b39c53</originalsourceid><addsrcrecordid>eNpNkV1u1DAQgC0EokvhCsgPCLUP2c7YSTbeVkirUNqgSovE8mw5ibNrlDiLnQj1jSNwFg7CIThJHXb5efJ45puRZj5CrhDmCMAuzj4WeXGOINIoSxN2hkIISM9TXLIrZLBcroq30er9bfaGz2Gery9ZtHlEZn8bHpMZ8BRDDOKEPPP-MwBinMFTcoKhslgInJHdh37QdjCqpX1Da23VMDpjt3TrVG1ChW51S3Wrq8H1-13vtDeeNr2jvlLWTmTo-_nj17fvw061ynvdGUW7cVCD6a2nxtLC1kY9J08a1Xr94viekk_vrjf5bXS3viny1V2058izKBNYayUw5qJMgSEKvgAOkCQsESJLSwFaNypmZSkqHZeJhrqskDWClVxUCT8lrw9z967_Mmo_yM74SretsrofvUxFhgsW8wC-PIJj2ela7p3plLuXf24TgFdHQIVd28YpWxn_j8uAccYCtjlgX02r7_8bIyeNcrIoJylykiIPFmWKMsQMZJAoJ4mSS5D5OmQ3v__8AcdplkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69817243</pqid></control><display><type>article</type><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</creator><creatorcontrib>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</creatorcontrib><description>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations.
We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time.
Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0361-8609</identifier><identifier>EISSN: 1096-8652</identifier><identifier>DOI: 10.1002/(SICI)1096-8652(199906)61:2<120::AID-AJH8>3.0.CO;2-T</identifier><identifier>PMID: 10367791</identifier><identifier>CODEN: AJHEDD</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Base Sequence - genetics ; beta-Thalassemia - genetics ; Biological and medical sciences ; DGGE ; DNA sequencing ; Electrophoresis, Polyacrylamide Gel ; Gene Deletion ; Genetic Linkage - genetics ; Globins - genetics ; Hematology ; Heterozygote ; Humans ; India ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; mutation ; Mutation - genetics ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; PCR ; thalassemia ; Tropical medicine</subject><ispartof>American journal of hematology, 1999-06, Vol.61 (2), p.120-125</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-8652%28199906%2961%3A2%3C120%3A%3AAID-AJH8%3E3.0.CO%3B2-T$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-8652%28199906%2961%3A2%3C120%3A%3AAID-AJH8%3E3.0.CO%3B2-T$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1802322$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10367791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorakshakar, A.C.</creatorcontrib><creatorcontrib>Pawar, A.R.</creatorcontrib><creatorcontrib>Nadkarni, A.H.</creatorcontrib><creatorcontrib>Lu, C.Y.</creatorcontrib><creatorcontrib>Mohanty, D.</creatorcontrib><creatorcontrib>Krishnamoorthy, R.</creatorcontrib><creatorcontrib>Besmond, C.</creatorcontrib><creatorcontrib>Colah, R.B.</creatorcontrib><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><title>American journal of hematology</title><addtitle>Am J Hematol</addtitle><description>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations.
We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time.
Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Base Sequence - genetics</subject><subject>beta-Thalassemia - genetics</subject><subject>Biological and medical sciences</subject><subject>DGGE</subject><subject>DNA sequencing</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Gene Deletion</subject><subject>Genetic Linkage - genetics</subject><subject>Globins - genetics</subject><subject>Hematology</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>India</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>mutation</subject><subject>Mutation - genetics</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>PCR</subject><subject>thalassemia</subject><subject>Tropical medicine</subject><issn>0361-8609</issn><issn>1096-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkV1u1DAQgC0EokvhCsgPCLUP2c7YSTbeVkirUNqgSovE8mw5ibNrlDiLnQj1jSNwFg7CIThJHXb5efJ45puRZj5CrhDmCMAuzj4WeXGOINIoSxN2hkIISM9TXLIrZLBcroq30er9bfaGz2Gery9ZtHlEZn8bHpMZ8BRDDOKEPPP-MwBinMFTcoKhslgInJHdh37QdjCqpX1Da23VMDpjt3TrVG1ChW51S3Wrq8H1-13vtDeeNr2jvlLWTmTo-_nj17fvw061ynvdGUW7cVCD6a2nxtLC1kY9J08a1Xr94viekk_vrjf5bXS3viny1V2058izKBNYayUw5qJMgSEKvgAOkCQsESJLSwFaNypmZSkqHZeJhrqskDWClVxUCT8lrw9z967_Mmo_yM74SretsrofvUxFhgsW8wC-PIJj2ela7p3plLuXf24TgFdHQIVd28YpWxn_j8uAccYCtjlgX02r7_8bIyeNcrIoJylykiIPFmWKMsQMZJAoJ4mSS5D5OmQ3v__8AcdplkE</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Gorakshakar, A.C.</creator><creator>Pawar, A.R.</creator><creator>Nadkarni, A.H.</creator><creator>Lu, C.Y.</creator><creator>Mohanty, D.</creator><creator>Krishnamoorthy, R.</creator><creator>Besmond, C.</creator><creator>Colah, R.B.</creator><general>John Wiley & Sons, Inc</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199906</creationdate><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><author>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3138-891dea91439b60211937030055259986b90eefa42bb9ce4b5e0dbc12f92b39c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Base Sequence - genetics</topic><topic>beta-Thalassemia - genetics</topic><topic>Biological and medical sciences</topic><topic>DGGE</topic><topic>DNA sequencing</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Gene Deletion</topic><topic>Genetic Linkage - genetics</topic><topic>Globins - genetics</topic><topic>Hematology</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>India</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>mutation</topic><topic>Mutation - genetics</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>PCR</topic><topic>thalassemia</topic><topic>Tropical medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorakshakar, A.C.</creatorcontrib><creatorcontrib>Pawar, A.R.</creatorcontrib><creatorcontrib>Nadkarni, A.H.</creatorcontrib><creatorcontrib>Lu, C.Y.</creatorcontrib><creatorcontrib>Mohanty, D.</creatorcontrib><creatorcontrib>Krishnamoorthy, R.</creatorcontrib><creatorcontrib>Besmond, C.</creatorcontrib><creatorcontrib>Colah, R.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorakshakar, A.C.</au><au>Pawar, A.R.</au><au>Nadkarni, A.H.</au><au>Lu, C.Y.</au><au>Mohanty, D.</au><au>Krishnamoorthy, R.</au><au>Besmond, C.</au><au>Colah, R.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</atitle><jtitle>American journal of hematology</jtitle><addtitle>Am J Hematol</addtitle><date>1999-06</date><risdate>1999</risdate><volume>61</volume><issue>2</issue><spage>120</spage><epage>125</epage><pages>120-125</pages><issn>0361-8609</issn><eissn>1096-8652</eissn><coden>AJHEDD</coden><abstract>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations.
We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time.
Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10367791</pmid><doi>10.1002/(SICI)1096-8652(199906)61:2<120::AID-AJH8>3.0.CO;2-T</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-8609 |
ispartof | American journal of hematology, 1999-06, Vol.61 (2), p.120-125 |
issn | 0361-8609 1096-8652 |
language | eng |
recordid | cdi_proquest_miscellaneous_69817243 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Base Sequence - genetics beta-Thalassemia - genetics Biological and medical sciences DGGE DNA sequencing Electrophoresis, Polyacrylamide Gel Gene Deletion Genetic Linkage - genetics Globins - genetics Hematology Heterozygote Humans India Investigative techniques, diagnostic techniques (general aspects) Medical sciences mutation Mutation - genetics Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques PCR thalassemia Tropical medicine |
title | Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20denaturing%20gradient%20gel%20electrophoresis%20for%20scanning%20of%20%CE%B2%E2%80%90thalassemia%20mutations%20in%20India&rft.jtitle=American%20journal%20of%20hematology&rft.au=Gorakshakar,%20A.C.&rft.date=1999-06&rft.volume=61&rft.issue=2&rft.spage=120&rft.epage=125&rft.pages=120-125&rft.issn=0361-8609&rft.eissn=1096-8652&rft.coden=AJHEDD&rft_id=info:doi/10.1002/(SICI)1096-8652(199906)61:2%3C120::AID-AJH8%3E3.0.CO;2-T&rft_dat=%3Cproquest_pubme%3E69817243%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69817243&rft_id=info:pmid/10367791&rfr_iscdi=true |