Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India

Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of hematology 1999-06, Vol.61 (2), p.120-125
Hauptverfasser: Gorakshakar, A.C., Pawar, A.R., Nadkarni, A.H., Lu, C.Y., Mohanty, D., Krishnamoorthy, R., Besmond, C., Colah, R.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 2
container_start_page 120
container_title American journal of hematology
container_volume 61
creator Gorakshakar, A.C.
Pawar, A.R.
Nadkarni, A.H.
Lu, C.Y.
Mohanty, D.
Krishnamoorthy, R.
Besmond, C.
Colah, R.B.
description Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations. We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time. Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1096-8652(199906)61:2<120::AID-AJH8>3.0.CO;2-T
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69817243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69817243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3138-891dea91439b60211937030055259986b90eefa42bb9ce4b5e0dbc12f92b39c53</originalsourceid><addsrcrecordid>eNpNkV1u1DAQgC0EokvhCsgPCLUP2c7YSTbeVkirUNqgSovE8mw5ibNrlDiLnQj1jSNwFg7CIThJHXb5efJ45puRZj5CrhDmCMAuzj4WeXGOINIoSxN2hkIISM9TXLIrZLBcroq30er9bfaGz2Gery9ZtHlEZn8bHpMZ8BRDDOKEPPP-MwBinMFTcoKhslgInJHdh37QdjCqpX1Da23VMDpjt3TrVG1ChW51S3Wrq8H1-13vtDeeNr2jvlLWTmTo-_nj17fvw061ynvdGUW7cVCD6a2nxtLC1kY9J08a1Xr94viekk_vrjf5bXS3viny1V2058izKBNYayUw5qJMgSEKvgAOkCQsESJLSwFaNypmZSkqHZeJhrqskDWClVxUCT8lrw9z967_Mmo_yM74SretsrofvUxFhgsW8wC-PIJj2ela7p3plLuXf24TgFdHQIVd28YpWxn_j8uAccYCtjlgX02r7_8bIyeNcrIoJylykiIPFmWKMsQMZJAoJ4mSS5D5OmQ3v__8AcdplkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69817243</pqid></control><display><type>article</type><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</creator><creatorcontrib>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</creatorcontrib><description>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations. We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time. Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0361-8609</identifier><identifier>EISSN: 1096-8652</identifier><identifier>DOI: 10.1002/(SICI)1096-8652(199906)61:2&lt;120::AID-AJH8&gt;3.0.CO;2-T</identifier><identifier>PMID: 10367791</identifier><identifier>CODEN: AJHEDD</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Base Sequence - genetics ; beta-Thalassemia - genetics ; Biological and medical sciences ; DGGE ; DNA sequencing ; Electrophoresis, Polyacrylamide Gel ; Gene Deletion ; Genetic Linkage - genetics ; Globins - genetics ; Hematology ; Heterozygote ; Humans ; India ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; mutation ; Mutation - genetics ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; PCR ; thalassemia ; Tropical medicine</subject><ispartof>American journal of hematology, 1999-06, Vol.61 (2), p.120-125</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-8652%28199906%2961%3A2%3C120%3A%3AAID-AJH8%3E3.0.CO%3B2-T$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-8652%28199906%2961%3A2%3C120%3A%3AAID-AJH8%3E3.0.CO%3B2-T$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1802322$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10367791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorakshakar, A.C.</creatorcontrib><creatorcontrib>Pawar, A.R.</creatorcontrib><creatorcontrib>Nadkarni, A.H.</creatorcontrib><creatorcontrib>Lu, C.Y.</creatorcontrib><creatorcontrib>Mohanty, D.</creatorcontrib><creatorcontrib>Krishnamoorthy, R.</creatorcontrib><creatorcontrib>Besmond, C.</creatorcontrib><creatorcontrib>Colah, R.B.</creatorcontrib><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><title>American journal of hematology</title><addtitle>Am J Hematol</addtitle><description>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations. We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time. Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Base Sequence - genetics</subject><subject>beta-Thalassemia - genetics</subject><subject>Biological and medical sciences</subject><subject>DGGE</subject><subject>DNA sequencing</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Gene Deletion</subject><subject>Genetic Linkage - genetics</subject><subject>Globins - genetics</subject><subject>Hematology</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>India</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>mutation</subject><subject>Mutation - genetics</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>PCR</subject><subject>thalassemia</subject><subject>Tropical medicine</subject><issn>0361-8609</issn><issn>1096-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkV1u1DAQgC0EokvhCsgPCLUP2c7YSTbeVkirUNqgSovE8mw5ibNrlDiLnQj1jSNwFg7CIThJHXb5efJ45puRZj5CrhDmCMAuzj4WeXGOINIoSxN2hkIISM9TXLIrZLBcroq30er9bfaGz2Gery9ZtHlEZn8bHpMZ8BRDDOKEPPP-MwBinMFTcoKhslgInJHdh37QdjCqpX1Da23VMDpjt3TrVG1ChW51S3Wrq8H1-13vtDeeNr2jvlLWTmTo-_nj17fvw061ynvdGUW7cVCD6a2nxtLC1kY9J08a1Xr94viekk_vrjf5bXS3viny1V2058izKBNYayUw5qJMgSEKvgAOkCQsESJLSwFaNypmZSkqHZeJhrqskDWClVxUCT8lrw9z967_Mmo_yM74SretsrofvUxFhgsW8wC-PIJj2ela7p3plLuXf24TgFdHQIVd28YpWxn_j8uAccYCtjlgX02r7_8bIyeNcrIoJylykiIPFmWKMsQMZJAoJ4mSS5D5OmQ3v__8AcdplkE</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Gorakshakar, A.C.</creator><creator>Pawar, A.R.</creator><creator>Nadkarni, A.H.</creator><creator>Lu, C.Y.</creator><creator>Mohanty, D.</creator><creator>Krishnamoorthy, R.</creator><creator>Besmond, C.</creator><creator>Colah, R.B.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199906</creationdate><title>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</title><author>Gorakshakar, A.C. ; Pawar, A.R. ; Nadkarni, A.H. ; Lu, C.Y. ; Mohanty, D. ; Krishnamoorthy, R. ; Besmond, C. ; Colah, R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3138-891dea91439b60211937030055259986b90eefa42bb9ce4b5e0dbc12f92b39c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Base Sequence - genetics</topic><topic>beta-Thalassemia - genetics</topic><topic>Biological and medical sciences</topic><topic>DGGE</topic><topic>DNA sequencing</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Gene Deletion</topic><topic>Genetic Linkage - genetics</topic><topic>Globins - genetics</topic><topic>Hematology</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>India</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>mutation</topic><topic>Mutation - genetics</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>PCR</topic><topic>thalassemia</topic><topic>Tropical medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorakshakar, A.C.</creatorcontrib><creatorcontrib>Pawar, A.R.</creatorcontrib><creatorcontrib>Nadkarni, A.H.</creatorcontrib><creatorcontrib>Lu, C.Y.</creatorcontrib><creatorcontrib>Mohanty, D.</creatorcontrib><creatorcontrib>Krishnamoorthy, R.</creatorcontrib><creatorcontrib>Besmond, C.</creatorcontrib><creatorcontrib>Colah, R.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorakshakar, A.C.</au><au>Pawar, A.R.</au><au>Nadkarni, A.H.</au><au>Lu, C.Y.</au><au>Mohanty, D.</au><au>Krishnamoorthy, R.</au><au>Besmond, C.</au><au>Colah, R.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India</atitle><jtitle>American journal of hematology</jtitle><addtitle>Am J Hematol</addtitle><date>1999-06</date><risdate>1999</risdate><volume>61</volume><issue>2</issue><spage>120</spage><epage>125</epage><pages>120-125</pages><issn>0361-8609</issn><eissn>1096-8652</eissn><coden>AJHEDD</coden><abstract>Over the last few years, substantial progress has been made in developing strategies for the detection and characterization of various mutations causing β‐thalassemia. The Indian population comprises of numerous endogamous caste groups and β‐thalassemia is seen in almost all of them. Knowledge of the spectrum of β‐thalassemia mutations in the population is a prerequisite for successful implementation of a prevention programme. Among the different approaches available today, Denaturing Gradient Gel Electrophoresis (DGGE) offers a valid technical approach which is applicable for screening of known mutants and polymorphisms as well as in locating regions of DNA bearing unknown mutations. We analysed 356 unrelated β‐thalassemia heterozygotes by DGGE and detected 30 anomalous DGGE patterns. Fifteen mutations were characterized after sequencing 25 anomalous patterns. Of these, codon 10(GCC → GCA) is a recently reported novel β‐thalassemia mutation while −28(A → G) and codon 121(G → T) are being reported for the first time in the Indian population. HbS and HbE also showed two anomalous DGGE patterns each. Framework (FW) linkage studies showed that four mutations were associated with different β‐globin gene frameworks. Linkage of IVSI‐5(G → C) and cap site +1 (A → C) to FW2 and 619‐bp deletion to FW1 is being observed for the first time. Multiple DGGE patterns corresponding to the same mutation is one of the major drawbacks of this technique. In spite of this, if sufficient preliminary work has been carried out to compile a comprehensive catalogue of DGGE patterns; this is a powerful approach to characterize the mutation or to localize a small region of DNA in the case of rarer mutations. Am. J. Hematol. 61:120–125, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10367791</pmid><doi>10.1002/(SICI)1096-8652(199906)61:2&lt;120::AID-AJH8&gt;3.0.CO;2-T</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-8609
ispartof American journal of hematology, 1999-06, Vol.61 (2), p.120-125
issn 0361-8609
1096-8652
language eng
recordid cdi_proquest_miscellaneous_69817243
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Base Sequence - genetics
beta-Thalassemia - genetics
Biological and medical sciences
DGGE
DNA sequencing
Electrophoresis, Polyacrylamide Gel
Gene Deletion
Genetic Linkage - genetics
Globins - genetics
Hematology
Heterozygote
Humans
India
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
mutation
Mutation - genetics
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
PCR
thalassemia
Tropical medicine
title Potential of denaturing gradient gel electrophoresis for scanning of β‐thalassemia mutations in India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20denaturing%20gradient%20gel%20electrophoresis%20for%20scanning%20of%20%CE%B2%E2%80%90thalassemia%20mutations%20in%20India&rft.jtitle=American%20journal%20of%20hematology&rft.au=Gorakshakar,%20A.C.&rft.date=1999-06&rft.volume=61&rft.issue=2&rft.spage=120&rft.epage=125&rft.pages=120-125&rft.issn=0361-8609&rft.eissn=1096-8652&rft.coden=AJHEDD&rft_id=info:doi/10.1002/(SICI)1096-8652(199906)61:2%3C120::AID-AJH8%3E3.0.CO;2-T&rft_dat=%3Cproquest_pubme%3E69817243%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69817243&rft_id=info:pmid/10367791&rfr_iscdi=true