Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes

Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2008-12, Vol.86 (16), p.3494-3502
Hauptverfasser: Tatsumi, Kouko, Takebayashi, Hirohide, Manabe, Takayuki, Tanaka, Kenji F., Makinodan, Manabu, Yamauchi, Takahira, Makinodan, Eri, Matsuyoshi, Hiroko, Okuda, Hiroaki, Ikenaka, Kazuhiro, Wanaka, Akio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3502
container_issue 16
container_start_page 3494
container_title Journal of neuroscience research
container_volume 86
creator Tatsumi, Kouko
Takebayashi, Hirohide
Manabe, Takayuki
Tanaka, Kenji F.
Makinodan, Manabu
Yamauchi, Takahira
Makinodan, Eri
Matsuyoshi, Hiroko
Okuda, Hiroaki
Ikenaka, Kazuhiro
Wanaka, Akio
description Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adult CNS. Recent studies have demonstrated an inhibitory action of Olig2 on neurogenesis in adult CNS, but the fate of Olig2+ cells in the injured state remains largely unknown. To trace directly the fate of Olig2 cells in the adult cerebral cortex after injury, we employed the CreER/loxP system to target the olig2 locus. In this genetic tracing study, green fluorescent protein (GFP) reporter‐positive cells labeled after cryoinjury coexpressed glial fibrillary acidic protein (GFAP), an astrocytic marker. Electron microscopy also showed that GFP+ cells have the ultrastructural characteristics of astrocytes. Furthermore, GFP+ cells labeled before injury, most of which had been NG2 cells, also produced bushy astrocytes. Here we show direct evidence that Olig2+ cells preferentially differentiate into astrocytes, which strongly express GFAP, in response to injury in the adult cerebral cortex. These results suggest that reactive astrocytes, known to be the main contributors to glial scars, originate, at least in part, from Olig2+ cells. © 2008 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jnr.21862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69813047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69813047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3612-f55026b17b3d6bc6cf2f1d80a5e8e0ba34945c20f084842a8c2802498fb5db8e3</originalsourceid><addsrcrecordid>eNp1kE2P0zAQhi0EYsvCgT-AfELikN2xnTjOEVVQPla7ogJxtBxnXFzSuGs7QM_8cQztwonTaDTP-0rzEPKUwQUD4JfbKV5wpiS_RxYMuraqm7q9TxYgJFQ1MH5GHqW0BYCua8RDcsaUYrLt1IL8XOGE2VvqTEa6M_u9nzY0OHoz-g2n-xg2OPkcYqJ-ovkLlrGdIw7UDPOYqcWIfTQjtSFm_EEjfkMzphJEV05T9uU2eHe3ZB-mUpEDNSnHYA8Z02PywJUMPjnNc_Lp9auPyzfV1c3q7fLlVWWFZLxyTQNc9qztxSB7K63jjg0KTIMKoTei7urGcnCgalVzoyxXwOtOub4ZeoXinDw_9pavbmdMWe98sjiOZsIwJy07xQTUbQFfHEEbQ0rlE72PfmfiQTPQv43rYlz_MV7YZ6fSud_h8I88KS7A5RH47kc8_L9Jv7te31VWx4RPRenfhIlftWxF2-jP1yvN1sv2w3LN9XvxC1vLnLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69813047</pqid></control><display><type>article</type><title>Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Tatsumi, Kouko ; Takebayashi, Hirohide ; Manabe, Takayuki ; Tanaka, Kenji F. ; Makinodan, Manabu ; Yamauchi, Takahira ; Makinodan, Eri ; Matsuyoshi, Hiroko ; Okuda, Hiroaki ; Ikenaka, Kazuhiro ; Wanaka, Akio</creator><creatorcontrib>Tatsumi, Kouko ; Takebayashi, Hirohide ; Manabe, Takayuki ; Tanaka, Kenji F. ; Makinodan, Manabu ; Yamauchi, Takahira ; Makinodan, Eri ; Matsuyoshi, Hiroko ; Okuda, Hiroaki ; Ikenaka, Kazuhiro ; Wanaka, Akio</creatorcontrib><description>Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adult CNS. Recent studies have demonstrated an inhibitory action of Olig2 on neurogenesis in adult CNS, but the fate of Olig2+ cells in the injured state remains largely unknown. To trace directly the fate of Olig2 cells in the adult cerebral cortex after injury, we employed the CreER/loxP system to target the olig2 locus. In this genetic tracing study, green fluorescent protein (GFP) reporter‐positive cells labeled after cryoinjury coexpressed glial fibrillary acidic protein (GFAP), an astrocytic marker. Electron microscopy also showed that GFP+ cells have the ultrastructural characteristics of astrocytes. Furthermore, GFP+ cells labeled before injury, most of which had been NG2 cells, also produced bushy astrocytes. Here we show direct evidence that Olig2+ cells preferentially differentiate into astrocytes, which strongly express GFAP, in response to injury in the adult cerebral cortex. These results suggest that reactive astrocytes, known to be the main contributors to glial scars, originate, at least in part, from Olig2+ cells. © 2008 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.21862</identifier><identifier>PMID: 18816798</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>adult cerebral cortex ; Animals ; Antigens - metabolism ; astrocyte ; Astrocytes - metabolism ; Astrocytes - ultrastructure ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Biomarkers - analysis ; Biomarkers - metabolism ; Brain Injuries - genetics ; Brain Injuries - metabolism ; Brain Injuries - physiopathology ; Cell Differentiation - genetics ; Cell Lineage - genetics ; Chromosome Mapping - methods ; Cicatrix - genetics ; Cicatrix - metabolism ; Cicatrix - physiopathology ; CreER/loxP system ; Cryosurgery - methods ; Gene Knock-In Techniques ; Genes, Reporter - genetics ; Glial Fibrillary Acidic Protein - genetics ; Glial Fibrillary Acidic Protein - metabolism ; Gliosis - genetics ; Gliosis - metabolism ; Gliosis - physiopathology ; Green Fluorescent Proteins - genetics ; Mice ; Mice, Transgenic ; Microscopy, Electron, Transmission ; Nerve Tissue Proteins - genetics ; Olig2 ; Oligodendrocyte Transcription Factor 2 ; progenitor cells ; Proteoglycans - metabolism ; Stem Cells - metabolism ; Stem Cells - ultrastructure</subject><ispartof>Journal of neuroscience research, 2008-12, Vol.86 (16), p.3494-3502</ispartof><rights>Copyright © 2008 Wiley‐Liss, Inc.</rights><rights>(c) 2008 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3612-f55026b17b3d6bc6cf2f1d80a5e8e0ba34945c20f084842a8c2802498fb5db8e3</citedby><cites>FETCH-LOGICAL-c3612-f55026b17b3d6bc6cf2f1d80a5e8e0ba34945c20f084842a8c2802498fb5db8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.21862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.21862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18816798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tatsumi, Kouko</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><creatorcontrib>Manabe, Takayuki</creatorcontrib><creatorcontrib>Tanaka, Kenji F.</creatorcontrib><creatorcontrib>Makinodan, Manabu</creatorcontrib><creatorcontrib>Yamauchi, Takahira</creatorcontrib><creatorcontrib>Makinodan, Eri</creatorcontrib><creatorcontrib>Matsuyoshi, Hiroko</creatorcontrib><creatorcontrib>Okuda, Hiroaki</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Wanaka, Akio</creatorcontrib><title>Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adult CNS. Recent studies have demonstrated an inhibitory action of Olig2 on neurogenesis in adult CNS, but the fate of Olig2+ cells in the injured state remains largely unknown. To trace directly the fate of Olig2 cells in the adult cerebral cortex after injury, we employed the CreER/loxP system to target the olig2 locus. In this genetic tracing study, green fluorescent protein (GFP) reporter‐positive cells labeled after cryoinjury coexpressed glial fibrillary acidic protein (GFAP), an astrocytic marker. Electron microscopy also showed that GFP+ cells have the ultrastructural characteristics of astrocytes. Furthermore, GFP+ cells labeled before injury, most of which had been NG2 cells, also produced bushy astrocytes. Here we show direct evidence that Olig2+ cells preferentially differentiate into astrocytes, which strongly express GFAP, in response to injury in the adult cerebral cortex. These results suggest that reactive astrocytes, known to be the main contributors to glial scars, originate, at least in part, from Olig2+ cells. © 2008 Wiley‐Liss, Inc.</description><subject>adult cerebral cortex</subject><subject>Animals</subject><subject>Antigens - metabolism</subject><subject>astrocyte</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - ultrastructure</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - metabolism</subject><subject>Brain Injuries - genetics</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - physiopathology</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Cicatrix - genetics</subject><subject>Cicatrix - metabolism</subject><subject>Cicatrix - physiopathology</subject><subject>CreER/loxP system</subject><subject>Cryosurgery - methods</subject><subject>Gene Knock-In Techniques</subject><subject>Genes, Reporter - genetics</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Gliosis - genetics</subject><subject>Gliosis - metabolism</subject><subject>Gliosis - physiopathology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Olig2</subject><subject>Oligodendrocyte Transcription Factor 2</subject><subject>progenitor cells</subject><subject>Proteoglycans - metabolism</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - ultrastructure</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE2P0zAQhi0EYsvCgT-AfELikN2xnTjOEVVQPla7ogJxtBxnXFzSuGs7QM_8cQztwonTaDTP-0rzEPKUwQUD4JfbKV5wpiS_RxYMuraqm7q9TxYgJFQ1MH5GHqW0BYCua8RDcsaUYrLt1IL8XOGE2VvqTEa6M_u9nzY0OHoz-g2n-xg2OPkcYqJ-ovkLlrGdIw7UDPOYqcWIfTQjtSFm_EEjfkMzphJEV05T9uU2eHe3ZB-mUpEDNSnHYA8Z02PywJUMPjnNc_Lp9auPyzfV1c3q7fLlVWWFZLxyTQNc9qztxSB7K63jjg0KTIMKoTei7urGcnCgalVzoyxXwOtOub4ZeoXinDw_9pavbmdMWe98sjiOZsIwJy07xQTUbQFfHEEbQ0rlE72PfmfiQTPQv43rYlz_MV7YZ6fSud_h8I88KS7A5RH47kc8_L9Jv7te31VWx4RPRenfhIlftWxF2-jP1yvN1sv2w3LN9XvxC1vLnLc</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Tatsumi, Kouko</creator><creator>Takebayashi, Hirohide</creator><creator>Manabe, Takayuki</creator><creator>Tanaka, Kenji F.</creator><creator>Makinodan, Manabu</creator><creator>Yamauchi, Takahira</creator><creator>Makinodan, Eri</creator><creator>Matsuyoshi, Hiroko</creator><creator>Okuda, Hiroaki</creator><creator>Ikenaka, Kazuhiro</creator><creator>Wanaka, Akio</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200812</creationdate><title>Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes</title><author>Tatsumi, Kouko ; Takebayashi, Hirohide ; Manabe, Takayuki ; Tanaka, Kenji F. ; Makinodan, Manabu ; Yamauchi, Takahira ; Makinodan, Eri ; Matsuyoshi, Hiroko ; Okuda, Hiroaki ; Ikenaka, Kazuhiro ; Wanaka, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3612-f55026b17b3d6bc6cf2f1d80a5e8e0ba34945c20f084842a8c2802498fb5db8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>adult cerebral cortex</topic><topic>Animals</topic><topic>Antigens - metabolism</topic><topic>astrocyte</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - ultrastructure</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - metabolism</topic><topic>Brain Injuries - genetics</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - physiopathology</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Cicatrix - genetics</topic><topic>Cicatrix - metabolism</topic><topic>Cicatrix - physiopathology</topic><topic>CreER/loxP system</topic><topic>Cryosurgery - methods</topic><topic>Gene Knock-In Techniques</topic><topic>Genes, Reporter - genetics</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Gliosis - genetics</topic><topic>Gliosis - metabolism</topic><topic>Gliosis - physiopathology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Olig2</topic><topic>Oligodendrocyte Transcription Factor 2</topic><topic>progenitor cells</topic><topic>Proteoglycans - metabolism</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatsumi, Kouko</creatorcontrib><creatorcontrib>Takebayashi, Hirohide</creatorcontrib><creatorcontrib>Manabe, Takayuki</creatorcontrib><creatorcontrib>Tanaka, Kenji F.</creatorcontrib><creatorcontrib>Makinodan, Manabu</creatorcontrib><creatorcontrib>Yamauchi, Takahira</creatorcontrib><creatorcontrib>Makinodan, Eri</creatorcontrib><creatorcontrib>Matsuyoshi, Hiroko</creatorcontrib><creatorcontrib>Okuda, Hiroaki</creatorcontrib><creatorcontrib>Ikenaka, Kazuhiro</creatorcontrib><creatorcontrib>Wanaka, Akio</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatsumi, Kouko</au><au>Takebayashi, Hirohide</au><au>Manabe, Takayuki</au><au>Tanaka, Kenji F.</au><au>Makinodan, Manabu</au><au>Yamauchi, Takahira</au><au>Makinodan, Eri</au><au>Matsuyoshi, Hiroko</au><au>Okuda, Hiroaki</au><au>Ikenaka, Kazuhiro</au><au>Wanaka, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2008-12</date><risdate>2008</risdate><volume>86</volume><issue>16</issue><spage>3494</spage><epage>3502</epage><pages>3494-3502</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adult CNS. Recent studies have demonstrated an inhibitory action of Olig2 on neurogenesis in adult CNS, but the fate of Olig2+ cells in the injured state remains largely unknown. To trace directly the fate of Olig2 cells in the adult cerebral cortex after injury, we employed the CreER/loxP system to target the olig2 locus. In this genetic tracing study, green fluorescent protein (GFP) reporter‐positive cells labeled after cryoinjury coexpressed glial fibrillary acidic protein (GFAP), an astrocytic marker. Electron microscopy also showed that GFP+ cells have the ultrastructural characteristics of astrocytes. Furthermore, GFP+ cells labeled before injury, most of which had been NG2 cells, also produced bushy astrocytes. Here we show direct evidence that Olig2+ cells preferentially differentiate into astrocytes, which strongly express GFAP, in response to injury in the adult cerebral cortex. These results suggest that reactive astrocytes, known to be the main contributors to glial scars, originate, at least in part, from Olig2+ cells. © 2008 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18816798</pmid><doi>10.1002/jnr.21862</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2008-12, Vol.86 (16), p.3494-3502
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_69813047
source MEDLINE; Wiley Online Library All Journals
subjects adult cerebral cortex
Animals
Antigens - metabolism
astrocyte
Astrocytes - metabolism
Astrocytes - ultrastructure
Basic Helix-Loop-Helix Transcription Factors - genetics
Biomarkers - analysis
Biomarkers - metabolism
Brain Injuries - genetics
Brain Injuries - metabolism
Brain Injuries - physiopathology
Cell Differentiation - genetics
Cell Lineage - genetics
Chromosome Mapping - methods
Cicatrix - genetics
Cicatrix - metabolism
Cicatrix - physiopathology
CreER/loxP system
Cryosurgery - methods
Gene Knock-In Techniques
Genes, Reporter - genetics
Glial Fibrillary Acidic Protein - genetics
Glial Fibrillary Acidic Protein - metabolism
Gliosis - genetics
Gliosis - metabolism
Gliosis - physiopathology
Green Fluorescent Proteins - genetics
Mice
Mice, Transgenic
Microscopy, Electron, Transmission
Nerve Tissue Proteins - genetics
Olig2
Oligodendrocyte Transcription Factor 2
progenitor cells
Proteoglycans - metabolism
Stem Cells - metabolism
Stem Cells - ultrastructure
title Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20fate%20mapping%20of%20Olig2%20progenitors%20in%20the%20injured%20adult%20cerebral%20cortex%20reveals%20preferential%20differentiation%20into%20astrocytes&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Tatsumi,%20Kouko&rft.date=2008-12&rft.volume=86&rft.issue=16&rft.spage=3494&rft.epage=3502&rft.pages=3494-3502&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.21862&rft_dat=%3Cproquest_cross%3E69813047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69813047&rft_id=info:pmid/18816798&rfr_iscdi=true