Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose

In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 1999-06, Vol.32 (5), p.1002-1012
Hauptverfasser: Kraakman, L, Lemaire, K, Ma, P, Teunissen, A.W.R.H, Donaton, M.C.V, Dijck, P. van, Winderickx, J, Winde, J.H. de, Thevelein, J.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 5
container_start_page 1002
container_title Molecular microbiology
container_volume 32
creator Kraakman, L
Lemaire, K
Ma, P
Teunissen, A.W.R.H
Donaton, M.C.V
Dijck, P. van
Winderickx, J
Winde, J.H. de
Thevelein, J.M
description In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.
doi_str_mv 10.1046/j.1365-2958.1999.01413.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69812078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>42249082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-36f8c746a6db54878d5a4d17c64858483036a32c7d9ad65db021b67e4d27e5d43</originalsourceid><addsrcrecordid>eNqNks1uEzEURi0EomngFcBi0VUn-H88CxZVBaFSI5BKJXaWY3sSR5Px1J5pmkfqW-JJIoTYwMrXvud-0tUxABCjGUZMfNzMMBW8IBWXM1xV1Qxhhuns6QWY_G68BBNUcVRQSX6egfOUNghhigR9Dc4woiLXZAKe77Qxax3Ddm9cgsZF9-iT1w7Oiy6G3vkWmjB0jbMwOuO6PsRLOO8ivoQ-wdQ542tvdNPsc_9h8DGDdYhw1QwmJAe16f2j7n1oYahhv3bQXC2-w073653eQztE364O733UbfIHsg9wFcOuX8N8OSW9Aa9q3ST39nROwf2Xzz-uvxa33-Y311e3heGY0oKKWpqSCS3skjNZSss1s7g0gkkumaR5dU2JKW2lreB2iQheitIxS0rHLaNTcHHMzes_DC71auuTcU2jWxeGpEQlMUGl_CeIS8I4lTyDH_4CN2GIbV5C4UrwLDCLmQJ5hEwMKUVXqy76rY57hZEapauNGt2q0a0apauDdPWUR9-d8ofl1tk_Bo-WM_DpCOx84_b_HawWi5uxyvPvj_O1Dkqvok_q_o6Mv4lUiLCS0l9N3MY1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196519901</pqid></control><display><type>article</type><title>Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kraakman, L ; Lemaire, K ; Ma, P ; Teunissen, A.W.R.H ; Donaton, M.C.V ; Dijck, P. van ; Winderickx, J ; Winde, J.H. de ; Thevelein, J.M</creator><creatorcontrib>Kraakman, L ; Lemaire, K ; Ma, P ; Teunissen, A.W.R.H ; Donaton, M.C.V ; Dijck, P. van ; Winderickx, J ; Winde, J.H. de ; Thevelein, J.M</creatorcontrib><description>In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.1999.01413.x</identifier><identifier>PMID: 10361302</identifier><language>eng</language><publisher>Oxford BSL: Blackwell Science Ltd</publisher><subject>Amino Acid Sequence ; Blotting, Northern ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Fungal Proteins - metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Glucose - metabolism ; GTP-Binding Protein alpha Subunits ; GTP-Binding Proteins - metabolism ; Heterotrimeric GTP-Binding Proteins ; Molecular Sequence Data ; Mutation ; plant biochemistry ; plant physiology ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, G-Protein-Coupled ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Signal Transduction ; signalling pathways</subject><ispartof>Molecular microbiology, 1999-06, Vol.32 (5), p.1002-1012</ispartof><rights>Blackwell Science Ltd, Oxford</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-36f8c746a6db54878d5a4d17c64858483036a32c7d9ad65db021b67e4d27e5d43</citedby><cites>FETCH-LOGICAL-c5133-36f8c746a6db54878d5a4d17c64858483036a32c7d9ad65db021b67e4d27e5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.1999.01413.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.1999.01413.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10361302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kraakman, L</creatorcontrib><creatorcontrib>Lemaire, K</creatorcontrib><creatorcontrib>Ma, P</creatorcontrib><creatorcontrib>Teunissen, A.W.R.H</creatorcontrib><creatorcontrib>Donaton, M.C.V</creatorcontrib><creatorcontrib>Dijck, P. van</creatorcontrib><creatorcontrib>Winderickx, J</creatorcontrib><creatorcontrib>Winde, J.H. de</creatorcontrib><creatorcontrib>Thevelein, J.M</creatorcontrib><title>Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.</description><subject>Amino Acid Sequence</subject><subject>Blotting, Northern</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes, Fungal</subject><subject>Glucose - metabolism</subject><subject>GTP-Binding Protein alpha Subunits</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Heterotrimeric GTP-Binding Proteins</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>plant biochemistry</subject><subject>plant physiology</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Signal Transduction</subject><subject>signalling pathways</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1uEzEURi0EomngFcBi0VUn-H88CxZVBaFSI5BKJXaWY3sSR5Px1J5pmkfqW-JJIoTYwMrXvud-0tUxABCjGUZMfNzMMBW8IBWXM1xV1Qxhhuns6QWY_G68BBNUcVRQSX6egfOUNghhigR9Dc4woiLXZAKe77Qxax3Ddm9cgsZF9-iT1w7Oiy6G3vkWmjB0jbMwOuO6PsRLOO8ivoQ-wdQ542tvdNPsc_9h8DGDdYhw1QwmJAe16f2j7n1oYahhv3bQXC2-w073653eQztE364O733UbfIHsg9wFcOuX8N8OSW9Aa9q3ST39nROwf2Xzz-uvxa33-Y311e3heGY0oKKWpqSCS3skjNZSss1s7g0gkkumaR5dU2JKW2lreB2iQheitIxS0rHLaNTcHHMzes_DC71auuTcU2jWxeGpEQlMUGl_CeIS8I4lTyDH_4CN2GIbV5C4UrwLDCLmQJ5hEwMKUVXqy76rY57hZEapauNGt2q0a0apauDdPWUR9-d8ofl1tk_Bo-WM_DpCOx84_b_HawWi5uxyvPvj_O1Dkqvok_q_o6Mv4lUiLCS0l9N3MY1</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Kraakman, L</creator><creator>Lemaire, K</creator><creator>Ma, P</creator><creator>Teunissen, A.W.R.H</creator><creator>Donaton, M.C.V</creator><creator>Dijck, P. van</creator><creator>Winderickx, J</creator><creator>Winde, J.H. de</creator><creator>Thevelein, J.M</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>199906</creationdate><title>Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose</title><author>Kraakman, L ; Lemaire, K ; Ma, P ; Teunissen, A.W.R.H ; Donaton, M.C.V ; Dijck, P. van ; Winderickx, J ; Winde, J.H. de ; Thevelein, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-36f8c746a6db54878d5a4d17c64858483036a32c7d9ad65db021b67e4d27e5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Blotting, Northern</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes, Fungal</topic><topic>Glucose - metabolism</topic><topic>GTP-Binding Protein alpha Subunits</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Heterotrimeric GTP-Binding Proteins</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>plant biochemistry</topic><topic>plant physiology</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Signal Transduction</topic><topic>signalling pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraakman, L</creatorcontrib><creatorcontrib>Lemaire, K</creatorcontrib><creatorcontrib>Ma, P</creatorcontrib><creatorcontrib>Teunissen, A.W.R.H</creatorcontrib><creatorcontrib>Donaton, M.C.V</creatorcontrib><creatorcontrib>Dijck, P. van</creatorcontrib><creatorcontrib>Winderickx, J</creatorcontrib><creatorcontrib>Winde, J.H. de</creatorcontrib><creatorcontrib>Thevelein, J.M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraakman, L</au><au>Lemaire, K</au><au>Ma, P</au><au>Teunissen, A.W.R.H</au><au>Donaton, M.C.V</au><au>Dijck, P. van</au><au>Winderickx, J</au><au>Winde, J.H. de</au><au>Thevelein, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>1999-06</date><risdate>1999</risdate><volume>32</volume><issue>5</issue><spage>1002</spage><epage>1012</epage><pages>1002-1012</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.</abstract><cop>Oxford BSL</cop><pub>Blackwell Science Ltd</pub><pmid>10361302</pmid><doi>10.1046/j.1365-2958.1999.01413.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 1999-06, Vol.32 (5), p.1002-1012
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_69812078
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Blotting, Northern
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Fungal Proteins - metabolism
Gene Expression Regulation, Fungal
Genes, Fungal
Glucose - metabolism
GTP-Binding Protein alpha Subunits
GTP-Binding Proteins - metabolism
Heterotrimeric GTP-Binding Proteins
Molecular Sequence Data
Mutation
plant biochemistry
plant physiology
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Receptors, G-Protein-Coupled
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Signal Transduction
signalling pathways
title Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saccharomyces%20cerevisiae%20G-protein%20coupled%20receptor,%20Gpr1,%20is%20specifically%20required%20for%20glucose%20activation%20of%20the%20cAMP%20pathway%20during%20the%20transition%20to%20growth%20on%20glucose&rft.jtitle=Molecular%20microbiology&rft.au=Kraakman,%20L&rft.date=1999-06&rft.volume=32&rft.issue=5&rft.spage=1002&rft.epage=1012&rft.pages=1002-1012&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.1999.01413.x&rft_dat=%3Cproquest_cross%3E42249082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196519901&rft_id=info:pmid/10361302&rfr_iscdi=true