Twinning superlattices in indium phosphide nanowires

Superconductivity: unlikely pairs In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2008-11, Vol.456 (7220), p.369-372
Hauptverfasser: Algra, Rienk E., Verheijen, Marcel A., Borgström, Magnus T., Feiner, Lou-Fé, Immink, George, van Enckevort, Willem J. P., Vlieg, Elias, Bakkers, Erik P. A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 7220
container_start_page 369
container_title Nature
container_volume 456
creator Algra, Rienk E.
Verheijen, Marcel A.
Borgström, Magnus T.
Feiner, Lou-Fé
Immink, George
van Enckevort, Willem J. P.
Vlieg, Elias
Bakkers, Erik P. A. M.
description Superconductivity: unlikely pairs In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electrons is thought to have a very different origin: quantum fluctuations of spin or charge. An unusually 'violent' generalization of such a pairing mechanisms, in which spin and charge instabilities combine forces, has been identified in the unconventional superconductor CeRhIn 5 . These intimately coupled fluctuations significantly disrupt the flow of electrons in their normal unpaired state, yet also provide the quantum-mechanical glue necessary for generating superconducting pairs. In this paper, the crystal structure and stacking fault density of semiconducting nanowires composed of the same material are controlled by doping, leading to twinning superlattices. Periodic arrays of rotational dislocations lead to crystal heterostructures in indium phosphide and gallium phosphide nanowires. Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design 1 , 2 , which allows for new device concepts 3 , 4 . However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density 5 . In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors 6 , 7 , such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics 8 and optics 9 industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InP nanowires in the zinc-blende, instead of the commonly found wurtzite, crystal structure 10 . More importantly, we then demonstrate that we can, once we have enforced the zinc-blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices
doi_str_mv 10.1038/nature07570
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69808983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189833753</galeid><sourcerecordid>A189833753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c689t-abd86963430c56309929cdf5ecfaa9e0641b897901e1c2d29cc06795fa56c8ff3</originalsourceid><addsrcrecordid>eNqF0t2L1DAQAPAgireePvkui6Ag2nOStmnyuCx-HBwKuuJjyKaTXo427SUt5_33l3UXb1dWJIFA5pcZMgwhzymcUcjFe6_HKSBUZQUPyIwWFc8KLqqHZAbARAYi5yfkSYxXAFDSqnhMTqgEBpxWM1Ksbpz3zjfzOA0YWj2OzmCcO5927aZuPlz2cbh0Nc699v2NCxifkkdWtxGf7c5T8uPjh9Xyc3bx9dP5cnGRGS7kmOl1LbjkeZGDKXkOUjJpaluisVpLBF7QtZCVBIrUsDoFDfBKllaX3Ahr81Pyept3CP31hHFUnYsG21Z77KeouBQgpMj_C6ksgUm6gS__glf9FHz6hGJQlAUDRhPKtqjRLSrnbT8GbRr0GHTbe7QuXS_o78pVuZf0wJvBXat9dHYEpVVj58zRrG8OHiQz4q-x0VOM6vz7t0P79t92sfq5_HJUm9DHGNCqIbhOh1tFQW1GSu2NVNIvdi2b1h3W93Y3Qwm82gEdjW5t0N64-MexNIAFiE2id1sXU8g3GO57f6zuHV533s4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204542021</pqid></control><display><type>article</type><title>Twinning superlattices in indium phosphide nanowires</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Algra, Rienk E. ; Verheijen, Marcel A. ; Borgström, Magnus T. ; Feiner, Lou-Fé ; Immink, George ; van Enckevort, Willem J. P. ; Vlieg, Elias ; Bakkers, Erik P. A. M.</creator><creatorcontrib>Algra, Rienk E. ; Verheijen, Marcel A. ; Borgström, Magnus T. ; Feiner, Lou-Fé ; Immink, George ; van Enckevort, Willem J. P. ; Vlieg, Elias ; Bakkers, Erik P. A. M.</creatorcontrib><description>Superconductivity: unlikely pairs In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electrons is thought to have a very different origin: quantum fluctuations of spin or charge. An unusually 'violent' generalization of such a pairing mechanisms, in which spin and charge instabilities combine forces, has been identified in the unconventional superconductor CeRhIn 5 . These intimately coupled fluctuations significantly disrupt the flow of electrons in their normal unpaired state, yet also provide the quantum-mechanical glue necessary for generating superconducting pairs. In this paper, the crystal structure and stacking fault density of semiconducting nanowires composed of the same material are controlled by doping, leading to twinning superlattices. Periodic arrays of rotational dislocations lead to crystal heterostructures in indium phosphide and gallium phosphide nanowires. Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design 1 , 2 , which allows for new device concepts 3 , 4 . However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density 5 . In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors 6 , 7 , such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics 8 and optics 9 industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InP nanowires in the zinc-blende, instead of the commonly found wurtzite, crystal structure 10 . More importantly, we then demonstrate that we can, once we have enforced the zinc-blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by changing the wire diameter and the zinc concentration, and we present a model based on the distortion of the catalyst droplet in response to the evolution of the cross-sectional shape of the nanowires to quantitatively explain the formation of the periodic twinning.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature07570</identifier><identifier>PMID: 19020617</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Band structure ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Crystallization ; Exact sciences and technology ; Gallium ; Humanities and Social Sciences ; Indium ; letter ; Materials science ; multidisciplinary ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanowires ; Optics ; Physics ; Quantum wires ; Science ; Science (multidisciplinary) ; Semiconductors ; Structure of solids and liquids; crystallography ; Transmission electron microscopy ; Zinc</subject><ispartof>Nature, 2008-11, Vol.456 (7220), p.369-372</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2008</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 20, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c689t-abd86963430c56309929cdf5ecfaa9e0641b897901e1c2d29cc06795fa56c8ff3</citedby><cites>FETCH-LOGICAL-c689t-abd86963430c56309929cdf5ecfaa9e0641b897901e1c2d29cc06795fa56c8ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature07570$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature07570$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20834080$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19020617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Algra, Rienk E.</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Borgström, Magnus T.</creatorcontrib><creatorcontrib>Feiner, Lou-Fé</creatorcontrib><creatorcontrib>Immink, George</creatorcontrib><creatorcontrib>van Enckevort, Willem J. P.</creatorcontrib><creatorcontrib>Vlieg, Elias</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><title>Twinning superlattices in indium phosphide nanowires</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Superconductivity: unlikely pairs In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electrons is thought to have a very different origin: quantum fluctuations of spin or charge. An unusually 'violent' generalization of such a pairing mechanisms, in which spin and charge instabilities combine forces, has been identified in the unconventional superconductor CeRhIn 5 . These intimately coupled fluctuations significantly disrupt the flow of electrons in their normal unpaired state, yet also provide the quantum-mechanical glue necessary for generating superconducting pairs. In this paper, the crystal structure and stacking fault density of semiconducting nanowires composed of the same material are controlled by doping, leading to twinning superlattices. Periodic arrays of rotational dislocations lead to crystal heterostructures in indium phosphide and gallium phosphide nanowires. Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design 1 , 2 , which allows for new device concepts 3 , 4 . However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density 5 . In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors 6 , 7 , such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics 8 and optics 9 industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InP nanowires in the zinc-blende, instead of the commonly found wurtzite, crystal structure 10 . More importantly, we then demonstrate that we can, once we have enforced the zinc-blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by changing the wire diameter and the zinc concentration, and we present a model based on the distortion of the catalyst droplet in response to the evolution of the cross-sectional shape of the nanowires to quantitatively explain the formation of the periodic twinning.</description><subject>Band structure</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Gallium</subject><subject>Humanities and Social Sciences</subject><subject>Indium</subject><subject>letter</subject><subject>Materials science</subject><subject>multidisciplinary</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanowires</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t2L1DAQAPAgireePvkui6Ag2nOStmnyuCx-HBwKuuJjyKaTXo427SUt5_33l3UXb1dWJIFA5pcZMgwhzymcUcjFe6_HKSBUZQUPyIwWFc8KLqqHZAbARAYi5yfkSYxXAFDSqnhMTqgEBpxWM1Ksbpz3zjfzOA0YWj2OzmCcO5927aZuPlz2cbh0Nc699v2NCxifkkdWtxGf7c5T8uPjh9Xyc3bx9dP5cnGRGS7kmOl1LbjkeZGDKXkOUjJpaluisVpLBF7QtZCVBIrUsDoFDfBKllaX3Ahr81Pyept3CP31hHFUnYsG21Z77KeouBQgpMj_C6ksgUm6gS__glf9FHz6hGJQlAUDRhPKtqjRLSrnbT8GbRr0GHTbe7QuXS_o78pVuZf0wJvBXat9dHYEpVVj58zRrG8OHiQz4q-x0VOM6vz7t0P79t92sfq5_HJUm9DHGNCqIbhOh1tFQW1GSu2NVNIvdi2b1h3W93Y3Qwm82gEdjW5t0N64-MexNIAFiE2id1sXU8g3GO57f6zuHV533s4</recordid><startdate>20081120</startdate><enddate>20081120</enddate><creator>Algra, Rienk E.</creator><creator>Verheijen, Marcel A.</creator><creator>Borgström, Magnus T.</creator><creator>Feiner, Lou-Fé</creator><creator>Immink, George</creator><creator>van Enckevort, Willem J. P.</creator><creator>Vlieg, Elias</creator><creator>Bakkers, Erik P. A. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>20081120</creationdate><title>Twinning superlattices in indium phosphide nanowires</title><author>Algra, Rienk E. ; Verheijen, Marcel A. ; Borgström, Magnus T. ; Feiner, Lou-Fé ; Immink, George ; van Enckevort, Willem J. P. ; Vlieg, Elias ; Bakkers, Erik P. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c689t-abd86963430c56309929cdf5ecfaa9e0641b897901e1c2d29cc06795fa56c8ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Band structure</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Gallium</topic><topic>Humanities and Social Sciences</topic><topic>Indium</topic><topic>letter</topic><topic>Materials science</topic><topic>multidisciplinary</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanowires</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Algra, Rienk E.</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Borgström, Magnus T.</creatorcontrib><creatorcontrib>Feiner, Lou-Fé</creatorcontrib><creatorcontrib>Immink, George</creatorcontrib><creatorcontrib>van Enckevort, Willem J. P.</creatorcontrib><creatorcontrib>Vlieg, Elias</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Algra, Rienk E.</au><au>Verheijen, Marcel A.</au><au>Borgström, Magnus T.</au><au>Feiner, Lou-Fé</au><au>Immink, George</au><au>van Enckevort, Willem J. P.</au><au>Vlieg, Elias</au><au>Bakkers, Erik P. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twinning superlattices in indium phosphide nanowires</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-11-20</date><risdate>2008</risdate><volume>456</volume><issue>7220</issue><spage>369</spage><epage>372</epage><pages>369-372</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Superconductivity: unlikely pairs In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electrons is thought to have a very different origin: quantum fluctuations of spin or charge. An unusually 'violent' generalization of such a pairing mechanisms, in which spin and charge instabilities combine forces, has been identified in the unconventional superconductor CeRhIn 5 . These intimately coupled fluctuations significantly disrupt the flow of electrons in their normal unpaired state, yet also provide the quantum-mechanical glue necessary for generating superconducting pairs. In this paper, the crystal structure and stacking fault density of semiconducting nanowires composed of the same material are controlled by doping, leading to twinning superlattices. Periodic arrays of rotational dislocations lead to crystal heterostructures in indium phosphide and gallium phosphide nanowires. Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design 1 , 2 , which allows for new device concepts 3 , 4 . However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density 5 . In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors 6 , 7 , such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics 8 and optics 9 industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InP nanowires in the zinc-blende, instead of the commonly found wurtzite, crystal structure 10 . More importantly, we then demonstrate that we can, once we have enforced the zinc-blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by changing the wire diameter and the zinc concentration, and we present a model based on the distortion of the catalyst droplet in response to the evolution of the cross-sectional shape of the nanowires to quantitatively explain the formation of the periodic twinning.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19020617</pmid><doi>10.1038/nature07570</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2008-11, Vol.456 (7220), p.369-372
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_proquest_miscellaneous_69808983
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Band structure
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystal structure
Crystallization
Exact sciences and technology
Gallium
Humanities and Social Sciences
Indium
letter
Materials science
multidisciplinary
Nanoscale materials and structures: fabrication and characterization
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanowires
Optics
Physics
Quantum wires
Science
Science (multidisciplinary)
Semiconductors
Structure of solids and liquids
crystallography
Transmission electron microscopy
Zinc
title Twinning superlattices in indium phosphide nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twinning%20superlattices%20in%20indium%20phosphide%20nanowires&rft.jtitle=Nature&rft.au=Algra,%20Rienk%20E.&rft.date=2008-11-20&rft.volume=456&rft.issue=7220&rft.spage=369&rft.epage=372&rft.pages=369-372&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07570&rft_dat=%3Cgale_proqu%3EA189833753%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204542021&rft_id=info:pmid/19020617&rft_galeid=A189833753&rfr_iscdi=true