Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance

Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical immunology 2008-11, Vol.28 (6), p.619-624
Hauptverfasser: Apostolou, Irina, Verginis, Panos, Kretschmer, Karsten, Polansky, Julia, Hühn, Jochen, von Boehmer, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 6
container_start_page 619
container_title Journal of clinical immunology
container_volume 28
creator Apostolou, Irina
Verginis, Panos
Kretschmer, Karsten
Polansky, Julia
Hühn, Jochen
von Boehmer, Harald
description Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.
doi_str_mv 10.1007/s10875-008-9254-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69808412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19802634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVJqB23P6CXInLoKZtqtKuv3ErIJw4tjXsWsjTrbFjvOtLuwf8-MjYECiEnCc0z77yjl5BvwM6BMfUzAdNKFIzpwnBRFfoTmYJQZcGF4UdkyriCwkDFJ-QkpWfGWCm5-EwmoHUFlYApuf-Dsdk8YXRtu6V3XRg9BrqIuLqgD33AM_o4uGXTNsP2jLou0L99i7Tp6OMGfVM3ni7yQ3Sdxy_kuHZtwq-Hc0b-XV8tLm-L-e-bu8tf88JXUg6F1l47Lcva1Mirpa6B49JJBdoZJoIMpgrKgDcCPGaXqua1AQy6FPnqWDkjP_a6m9i_jJgGu26Sx7Z1HfZjstJoltfjH4KQQS7LKoOn_4HP_Ri7vITlILVRKvudEdhDPvYpRaztJjZrF7cWmN3FYfdx2ByH3cVhde75fhAel2sMbx2H_88A3wMpl7oVxrfJ76u-AvWGkvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216897786</pqid></control><display><type>article</type><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</creator><creatorcontrib>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</creatorcontrib><description>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</description><identifier>ISSN: 0271-9142</identifier><identifier>EISSN: 1573-2592</identifier><identifier>DOI: 10.1007/s10875-008-9254-8</identifier><identifier>PMID: 18841451</identifier><identifier>CODEN: JCIMDO</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Forkhead Transcription Factors - immunology ; Forkhead Transcription Factors - metabolism ; Humans ; Immune Tolerance - immunology ; Immunology ; Infectious Diseases ; Internal Medicine ; Medical Microbiology ; Mice ; Receptors, Antigen, T-Cell - immunology ; Receptors, Antigen, T-Cell - metabolism ; T-Lymphocyte Subsets - immunology ; T-Lymphocyte Subsets - metabolism ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Thymus Gland - immunology ; Thymus Gland - metabolism ; Transforming Growth Factor beta - immunology ; Transforming Growth Factor beta - metabolism</subject><ispartof>Journal of clinical immunology, 2008-11, Vol.28 (6), p.619-624</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</citedby><cites>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10875-008-9254-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10875-008-9254-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18841451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apostolou, Irina</creatorcontrib><creatorcontrib>Verginis, Panos</creatorcontrib><creatorcontrib>Kretschmer, Karsten</creatorcontrib><creatorcontrib>Polansky, Julia</creatorcontrib><creatorcontrib>Hühn, Jochen</creatorcontrib><creatorcontrib>von Boehmer, Harald</creatorcontrib><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><title>Journal of clinical immunology</title><addtitle>J Clin Immunol</addtitle><addtitle>J Clin Immunol</addtitle><description>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Forkhead Transcription Factors - immunology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Humans</subject><subject>Immune Tolerance - immunology</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Internal Medicine</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Thymus Gland - immunology</subject><subject>Thymus Gland - metabolism</subject><subject>Transforming Growth Factor beta - immunology</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>0271-9142</issn><issn>1573-2592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1rGzEQhkVJqB23P6CXInLoKZtqtKuv3ErIJw4tjXsWsjTrbFjvOtLuwf8-MjYECiEnCc0z77yjl5BvwM6BMfUzAdNKFIzpwnBRFfoTmYJQZcGF4UdkyriCwkDFJ-QkpWfGWCm5-EwmoHUFlYApuf-Dsdk8YXRtu6V3XRg9BrqIuLqgD33AM_o4uGXTNsP2jLou0L99i7Tp6OMGfVM3ni7yQ3Sdxy_kuHZtwq-Hc0b-XV8tLm-L-e-bu8tf88JXUg6F1l47Lcva1Mirpa6B49JJBdoZJoIMpgrKgDcCPGaXqua1AQy6FPnqWDkjP_a6m9i_jJgGu26Sx7Z1HfZjstJoltfjH4KQQS7LKoOn_4HP_Ri7vITlILVRKvudEdhDPvYpRaztJjZrF7cWmN3FYfdx2ByH3cVhde75fhAel2sMbx2H_88A3wMpl7oVxrfJ76u-AvWGkvc</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Apostolou, Irina</creator><creator>Verginis, Panos</creator><creator>Kretschmer, Karsten</creator><creator>Polansky, Julia</creator><creator>Hühn, Jochen</creator><creator>von Boehmer, Harald</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><author>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Forkhead Transcription Factors - immunology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Humans</topic><topic>Immune Tolerance - immunology</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Internal Medicine</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Thymus Gland - immunology</topic><topic>Thymus Gland - metabolism</topic><topic>Transforming Growth Factor beta - immunology</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apostolou, Irina</creatorcontrib><creatorcontrib>Verginis, Panos</creatorcontrib><creatorcontrib>Kretschmer, Karsten</creatorcontrib><creatorcontrib>Polansky, Julia</creatorcontrib><creatorcontrib>Hühn, Jochen</creatorcontrib><creatorcontrib>von Boehmer, Harald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apostolou, Irina</au><au>Verginis, Panos</au><au>Kretschmer, Karsten</au><au>Polansky, Julia</au><au>Hühn, Jochen</au><au>von Boehmer, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</atitle><jtitle>Journal of clinical immunology</jtitle><stitle>J Clin Immunol</stitle><addtitle>J Clin Immunol</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>28</volume><issue>6</issue><spage>619</spage><epage>624</epage><pages>619-624</pages><issn>0271-9142</issn><eissn>1573-2592</eissn><coden>JCIMDO</coden><abstract>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18841451</pmid><doi>10.1007/s10875-008-9254-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-9142
ispartof Journal of clinical immunology, 2008-11, Vol.28 (6), p.619-624
issn 0271-9142
1573-2592
language eng
recordid cdi_proquest_miscellaneous_69808412
source MEDLINE; SpringerNature Journals
subjects Animals
Biomedical and Life Sciences
Biomedicine
Forkhead Transcription Factors - immunology
Forkhead Transcription Factors - metabolism
Humans
Immune Tolerance - immunology
Immunology
Infectious Diseases
Internal Medicine
Medical Microbiology
Mice
Receptors, Antigen, T-Cell - immunology
Receptors, Antigen, T-Cell - metabolism
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - metabolism
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Thymus Gland - immunology
Thymus Gland - metabolism
Transforming Growth Factor beta - immunology
Transforming Growth Factor beta - metabolism
title Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripherally%20Induced%20Treg:%20Mode,%20Stability,%20and%20Role%20in%20Specific%20Tolerance&rft.jtitle=Journal%20of%20clinical%20immunology&rft.au=Apostolou,%20Irina&rft.date=2008-11-01&rft.volume=28&rft.issue=6&rft.spage=619&rft.epage=624&rft.pages=619-624&rft.issn=0271-9142&rft.eissn=1573-2592&rft.coden=JCIMDO&rft_id=info:doi/10.1007/s10875-008-9254-8&rft_dat=%3Cproquest_cross%3E19802634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216897786&rft_id=info:pmid/18841451&rfr_iscdi=true