Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance
Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hy...
Gespeichert in:
Veröffentlicht in: | Journal of clinical immunology 2008-11, Vol.28 (6), p.619-624 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 6 |
container_start_page | 619 |
container_title | Journal of clinical immunology |
container_volume | 28 |
creator | Apostolou, Irina Verginis, Panos Kretschmer, Karsten Polansky, Julia Hühn, Jochen von Boehmer, Harald |
description | Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts. |
doi_str_mv | 10.1007/s10875-008-9254-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69808412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19802634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVJqB23P6CXInLoKZtqtKuv3ErIJw4tjXsWsjTrbFjvOtLuwf8-MjYECiEnCc0z77yjl5BvwM6BMfUzAdNKFIzpwnBRFfoTmYJQZcGF4UdkyriCwkDFJ-QkpWfGWCm5-EwmoHUFlYApuf-Dsdk8YXRtu6V3XRg9BrqIuLqgD33AM_o4uGXTNsP2jLou0L99i7Tp6OMGfVM3ni7yQ3Sdxy_kuHZtwq-Hc0b-XV8tLm-L-e-bu8tf88JXUg6F1l47Lcva1Mirpa6B49JJBdoZJoIMpgrKgDcCPGaXqua1AQy6FPnqWDkjP_a6m9i_jJgGu26Sx7Z1HfZjstJoltfjH4KQQS7LKoOn_4HP_Ri7vITlILVRKvudEdhDPvYpRaztJjZrF7cWmN3FYfdx2ByH3cVhde75fhAel2sMbx2H_88A3wMpl7oVxrfJ76u-AvWGkvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216897786</pqid></control><display><type>article</type><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</creator><creatorcontrib>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</creatorcontrib><description>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</description><identifier>ISSN: 0271-9142</identifier><identifier>EISSN: 1573-2592</identifier><identifier>DOI: 10.1007/s10875-008-9254-8</identifier><identifier>PMID: 18841451</identifier><identifier>CODEN: JCIMDO</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Forkhead Transcription Factors - immunology ; Forkhead Transcription Factors - metabolism ; Humans ; Immune Tolerance - immunology ; Immunology ; Infectious Diseases ; Internal Medicine ; Medical Microbiology ; Mice ; Receptors, Antigen, T-Cell - immunology ; Receptors, Antigen, T-Cell - metabolism ; T-Lymphocyte Subsets - immunology ; T-Lymphocyte Subsets - metabolism ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Thymus Gland - immunology ; Thymus Gland - metabolism ; Transforming Growth Factor beta - immunology ; Transforming Growth Factor beta - metabolism</subject><ispartof>Journal of clinical immunology, 2008-11, Vol.28 (6), p.619-624</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</citedby><cites>FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10875-008-9254-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10875-008-9254-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18841451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apostolou, Irina</creatorcontrib><creatorcontrib>Verginis, Panos</creatorcontrib><creatorcontrib>Kretschmer, Karsten</creatorcontrib><creatorcontrib>Polansky, Julia</creatorcontrib><creatorcontrib>Hühn, Jochen</creatorcontrib><creatorcontrib>von Boehmer, Harald</creatorcontrib><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><title>Journal of clinical immunology</title><addtitle>J Clin Immunol</addtitle><addtitle>J Clin Immunol</addtitle><description>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Forkhead Transcription Factors - immunology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Humans</subject><subject>Immune Tolerance - immunology</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Internal Medicine</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Thymus Gland - immunology</subject><subject>Thymus Gland - metabolism</subject><subject>Transforming Growth Factor beta - immunology</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>0271-9142</issn><issn>1573-2592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1rGzEQhkVJqB23P6CXInLoKZtqtKuv3ErIJw4tjXsWsjTrbFjvOtLuwf8-MjYECiEnCc0z77yjl5BvwM6BMfUzAdNKFIzpwnBRFfoTmYJQZcGF4UdkyriCwkDFJ-QkpWfGWCm5-EwmoHUFlYApuf-Dsdk8YXRtu6V3XRg9BrqIuLqgD33AM_o4uGXTNsP2jLou0L99i7Tp6OMGfVM3ni7yQ3Sdxy_kuHZtwq-Hc0b-XV8tLm-L-e-bu8tf88JXUg6F1l47Lcva1Mirpa6B49JJBdoZJoIMpgrKgDcCPGaXqua1AQy6FPnqWDkjP_a6m9i_jJgGu26Sx7Z1HfZjstJoltfjH4KQQS7LKoOn_4HP_Ri7vITlILVRKvudEdhDPvYpRaztJjZrF7cWmN3FYfdx2ByH3cVhde75fhAel2sMbx2H_88A3wMpl7oVxrfJ76u-AvWGkvc</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Apostolou, Irina</creator><creator>Verginis, Panos</creator><creator>Kretschmer, Karsten</creator><creator>Polansky, Julia</creator><creator>Hühn, Jochen</creator><creator>von Boehmer, Harald</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</title><author>Apostolou, Irina ; Verginis, Panos ; Kretschmer, Karsten ; Polansky, Julia ; Hühn, Jochen ; von Boehmer, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-88c8a863f9fe24b8f12eba6718a905d6d94d791c951ce4147f2f91ed8357f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Forkhead Transcription Factors - immunology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Humans</topic><topic>Immune Tolerance - immunology</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Internal Medicine</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Thymus Gland - immunology</topic><topic>Thymus Gland - metabolism</topic><topic>Transforming Growth Factor beta - immunology</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apostolou, Irina</creatorcontrib><creatorcontrib>Verginis, Panos</creatorcontrib><creatorcontrib>Kretschmer, Karsten</creatorcontrib><creatorcontrib>Polansky, Julia</creatorcontrib><creatorcontrib>Hühn, Jochen</creatorcontrib><creatorcontrib>von Boehmer, Harald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apostolou, Irina</au><au>Verginis, Panos</au><au>Kretschmer, Karsten</au><au>Polansky, Julia</au><au>Hühn, Jochen</au><au>von Boehmer, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance</atitle><jtitle>Journal of clinical immunology</jtitle><stitle>J Clin Immunol</stitle><addtitle>J Clin Immunol</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>28</volume><issue>6</issue><spage>619</spage><epage>624</epage><pages>619-624</pages><issn>0271-9142</issn><eissn>1573-2592</eissn><coden>JCIMDO</coden><abstract>Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18841451</pmid><doi>10.1007/s10875-008-9254-8</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-9142 |
ispartof | Journal of clinical immunology, 2008-11, Vol.28 (6), p.619-624 |
issn | 0271-9142 1573-2592 |
language | eng |
recordid | cdi_proquest_miscellaneous_69808412 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Biomedical and Life Sciences Biomedicine Forkhead Transcription Factors - immunology Forkhead Transcription Factors - metabolism Humans Immune Tolerance - immunology Immunology Infectious Diseases Internal Medicine Medical Microbiology Mice Receptors, Antigen, T-Cell - immunology Receptors, Antigen, T-Cell - metabolism T-Lymphocyte Subsets - immunology T-Lymphocyte Subsets - metabolism T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Thymus Gland - immunology Thymus Gland - metabolism Transforming Growth Factor beta - immunology Transforming Growth Factor beta - metabolism |
title | Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripherally%20Induced%20Treg:%20Mode,%20Stability,%20and%20Role%20in%20Specific%20Tolerance&rft.jtitle=Journal%20of%20clinical%20immunology&rft.au=Apostolou,%20Irina&rft.date=2008-11-01&rft.volume=28&rft.issue=6&rft.spage=619&rft.epage=624&rft.pages=619-624&rft.issn=0271-9142&rft.eissn=1573-2592&rft.coden=JCIMDO&rft_id=info:doi/10.1007/s10875-008-9254-8&rft_dat=%3Cproquest_cross%3E19802634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216897786&rft_id=info:pmid/18841451&rfr_iscdi=true |