Functional Connectivity of Human Striatum: A Resting State fMRI Study

Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747
Hauptverfasser: Di Martino, A., Scheres, A., Margulies, D.S., Kelly, A.M.C., Uddin, L.Q., Shehzad, Z., Biswal, B., Walters, J.R., Castellanos, F.X., Milham, M.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2747
container_issue 12
container_start_page 2735
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 18
creator Di Martino, A.
Scheres, A.
Margulies, D.S.
Kelly, A.M.C.
Uddin, L.Q.
Shehzad, Z.
Biswal, B.
Walters, J.R.
Castellanos, F.X.
Milham, M.P.
description Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.
doi_str_mv 10.1093/cercor/bhn041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69799472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhn041</oup_id><sourcerecordid>19507073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgivPX0asUD-Klmte0TeNtzM0JE8Gfw0vI0kSrazOTRtx_b6RDwYunvIQP3zzeQ2gf8AlgRk6lstLY09lLg1NYQ1uQ5jhOgLH1UOOUxiQB6KFt514xBppkySbqQZFiTFm6hYYj38i2Mo2YRwPTNCpcPqp2GRkdjX0tmui2tZVofX0W9aMb5dqqeQ5volWRvrq5DKUvl7toQ4u5U3urcwfdj4Z3g3E8ub64HPQnscySrI1nqSwoJkJJqfNEyQIgp4VkaWgFtJxphlOpSkLKUhJKS4xLKJlmQgsQGlOyg4663IU17z40w-vKSTWfi0YZ73jOKAtpyb8QWIZpCAzw8A98Nd6GaXybghaMJhBQ3CFpjXNWab6wVS3skgPm31vg3RZ4t4XgD1ahflar8levxh7AcQeMX_ybtfq7cq36_MHCvvGcEprx8fSJP04nD7fnE8KBfAEvkaEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198789721</pqid></control><display><type>article</type><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</creator><creatorcontrib>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</creatorcontrib><description>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhn041</identifier><identifier>PMID: 18400794</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Automatic Data Processing - methods ; basal ganglia ; Basal Ganglia - anatomy &amp; histology ; Basal Ganglia - physiology ; caudate ; Caudate Nucleus - anatomy &amp; histology ; Caudate Nucleus - physiology ; Corpus Striatum - anatomy &amp; histology ; Corpus Striatum - physiology ; fMRI ; functional connectivity ; Functional Laterality - physiology ; Humans ; Magnetic Resonance Imaging ; Models, Neurological ; Motor Activity - physiology ; nucleus accumbens ; Nucleus Accumbens - anatomy &amp; histology ; Nucleus Accumbens - physiology ; putamen ; Putamen - anatomy &amp; histology ; Putamen - physiology ; Rest - physiology ; resting state ; Signal Transduction</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</citedby><cites>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18400794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Martino, A.</creatorcontrib><creatorcontrib>Scheres, A.</creatorcontrib><creatorcontrib>Margulies, D.S.</creatorcontrib><creatorcontrib>Kelly, A.M.C.</creatorcontrib><creatorcontrib>Uddin, L.Q.</creatorcontrib><creatorcontrib>Shehzad, Z.</creatorcontrib><creatorcontrib>Biswal, B.</creatorcontrib><creatorcontrib>Walters, J.R.</creatorcontrib><creatorcontrib>Castellanos, F.X.</creatorcontrib><creatorcontrib>Milham, M.P.</creatorcontrib><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</description><subject>Automatic Data Processing - methods</subject><subject>basal ganglia</subject><subject>Basal Ganglia - anatomy &amp; histology</subject><subject>Basal Ganglia - physiology</subject><subject>caudate</subject><subject>Caudate Nucleus - anatomy &amp; histology</subject><subject>Caudate Nucleus - physiology</subject><subject>Corpus Striatum - anatomy &amp; histology</subject><subject>Corpus Striatum - physiology</subject><subject>fMRI</subject><subject>functional connectivity</subject><subject>Functional Laterality - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Neurological</subject><subject>Motor Activity - physiology</subject><subject>nucleus accumbens</subject><subject>Nucleus Accumbens - anatomy &amp; histology</subject><subject>Nucleus Accumbens - physiology</subject><subject>putamen</subject><subject>Putamen - anatomy &amp; histology</subject><subject>Putamen - physiology</subject><subject>Rest - physiology</subject><subject>resting state</subject><subject>Signal Transduction</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgivPX0asUD-Klmte0TeNtzM0JE8Gfw0vI0kSrazOTRtx_b6RDwYunvIQP3zzeQ2gf8AlgRk6lstLY09lLg1NYQ1uQ5jhOgLH1UOOUxiQB6KFt514xBppkySbqQZFiTFm6hYYj38i2Mo2YRwPTNCpcPqp2GRkdjX0tmui2tZVofX0W9aMb5dqqeQ5volWRvrq5DKUvl7toQ4u5U3urcwfdj4Z3g3E8ub64HPQnscySrI1nqSwoJkJJqfNEyQIgp4VkaWgFtJxphlOpSkLKUhJKS4xLKJlmQgsQGlOyg4663IU17z40w-vKSTWfi0YZ73jOKAtpyb8QWIZpCAzw8A98Nd6GaXybghaMJhBQ3CFpjXNWab6wVS3skgPm31vg3RZ4t4XgD1ahflar8levxh7AcQeMX_ybtfq7cq36_MHCvvGcEprx8fSJP04nD7fnE8KBfAEvkaEC</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Di Martino, A.</creator><creator>Scheres, A.</creator><creator>Margulies, D.S.</creator><creator>Kelly, A.M.C.</creator><creator>Uddin, L.Q.</creator><creator>Shehzad, Z.</creator><creator>Biswal, B.</creator><creator>Walters, J.R.</creator><creator>Castellanos, F.X.</creator><creator>Milham, M.P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><author>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic Data Processing - methods</topic><topic>basal ganglia</topic><topic>Basal Ganglia - anatomy &amp; histology</topic><topic>Basal Ganglia - physiology</topic><topic>caudate</topic><topic>Caudate Nucleus - anatomy &amp; histology</topic><topic>Caudate Nucleus - physiology</topic><topic>Corpus Striatum - anatomy &amp; histology</topic><topic>Corpus Striatum - physiology</topic><topic>fMRI</topic><topic>functional connectivity</topic><topic>Functional Laterality - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Neurological</topic><topic>Motor Activity - physiology</topic><topic>nucleus accumbens</topic><topic>Nucleus Accumbens - anatomy &amp; histology</topic><topic>Nucleus Accumbens - physiology</topic><topic>putamen</topic><topic>Putamen - anatomy &amp; histology</topic><topic>Putamen - physiology</topic><topic>Rest - physiology</topic><topic>resting state</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Martino, A.</creatorcontrib><creatorcontrib>Scheres, A.</creatorcontrib><creatorcontrib>Margulies, D.S.</creatorcontrib><creatorcontrib>Kelly, A.M.C.</creatorcontrib><creatorcontrib>Uddin, L.Q.</creatorcontrib><creatorcontrib>Shehzad, Z.</creatorcontrib><creatorcontrib>Biswal, B.</creatorcontrib><creatorcontrib>Walters, J.R.</creatorcontrib><creatorcontrib>Castellanos, F.X.</creatorcontrib><creatorcontrib>Milham, M.P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Martino, A.</au><au>Scheres, A.</au><au>Margulies, D.S.</au><au>Kelly, A.M.C.</au><au>Uddin, L.Q.</au><au>Shehzad, Z.</au><au>Biswal, B.</au><au>Walters, J.R.</au><au>Castellanos, F.X.</au><au>Milham, M.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Connectivity of Human Striatum: A Resting State fMRI Study</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>18</volume><issue>12</issue><spage>2735</spage><epage>2747</epage><pages>2735-2747</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>18400794</pmid><doi>10.1093/cercor/bhn041</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747
issn 1047-3211
1460-2199
language eng
recordid cdi_proquest_miscellaneous_69799472
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Automatic Data Processing - methods
basal ganglia
Basal Ganglia - anatomy & histology
Basal Ganglia - physiology
caudate
Caudate Nucleus - anatomy & histology
Caudate Nucleus - physiology
Corpus Striatum - anatomy & histology
Corpus Striatum - physiology
fMRI
functional connectivity
Functional Laterality - physiology
Humans
Magnetic Resonance Imaging
Models, Neurological
Motor Activity - physiology
nucleus accumbens
Nucleus Accumbens - anatomy & histology
Nucleus Accumbens - physiology
putamen
Putamen - anatomy & histology
Putamen - physiology
Rest - physiology
resting state
Signal Transduction
title Functional Connectivity of Human Striatum: A Resting State fMRI Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Connectivity%20of%20Human%20Striatum:%20A%20Resting%20State%20fMRI%20Study&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Di%20Martino,%20A.&rft.date=2008-12-01&rft.volume=18&rft.issue=12&rft.spage=2735&rft.epage=2747&rft.pages=2735-2747&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhn041&rft_dat=%3Cproquest_cross%3E19507073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198789721&rft_id=info:pmid/18400794&rft_oup_id=10.1093/cercor/bhn041&rfr_iscdi=true