Functional Connectivity of Human Striatum: A Resting State fMRI Study
Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2747 |
---|---|
container_issue | 12 |
container_start_page | 2735 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 18 |
creator | Di Martino, A. Scheres, A. Margulies, D.S. Kelly, A.M.C. Uddin, L.Q. Shehzad, Z. Biswal, B. Walters, J.R. Castellanos, F.X. Milham, M.P. |
description | Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders. |
doi_str_mv | 10.1093/cercor/bhn041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69799472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhn041</oup_id><sourcerecordid>19507073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgivPX0asUD-Klmte0TeNtzM0JE8Gfw0vI0kSrazOTRtx_b6RDwYunvIQP3zzeQ2gf8AlgRk6lstLY09lLg1NYQ1uQ5jhOgLH1UOOUxiQB6KFt514xBppkySbqQZFiTFm6hYYj38i2Mo2YRwPTNCpcPqp2GRkdjX0tmui2tZVofX0W9aMb5dqqeQ5volWRvrq5DKUvl7toQ4u5U3urcwfdj4Z3g3E8ub64HPQnscySrI1nqSwoJkJJqfNEyQIgp4VkaWgFtJxphlOpSkLKUhJKS4xLKJlmQgsQGlOyg4663IU17z40w-vKSTWfi0YZ73jOKAtpyb8QWIZpCAzw8A98Nd6GaXybghaMJhBQ3CFpjXNWab6wVS3skgPm31vg3RZ4t4XgD1ahflar8levxh7AcQeMX_ybtfq7cq36_MHCvvGcEprx8fSJP04nD7fnE8KBfAEvkaEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198789721</pqid></control><display><type>article</type><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</creator><creatorcontrib>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</creatorcontrib><description>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhn041</identifier><identifier>PMID: 18400794</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Automatic Data Processing - methods ; basal ganglia ; Basal Ganglia - anatomy & histology ; Basal Ganglia - physiology ; caudate ; Caudate Nucleus - anatomy & histology ; Caudate Nucleus - physiology ; Corpus Striatum - anatomy & histology ; Corpus Striatum - physiology ; fMRI ; functional connectivity ; Functional Laterality - physiology ; Humans ; Magnetic Resonance Imaging ; Models, Neurological ; Motor Activity - physiology ; nucleus accumbens ; Nucleus Accumbens - anatomy & histology ; Nucleus Accumbens - physiology ; putamen ; Putamen - anatomy & histology ; Putamen - physiology ; Rest - physiology ; resting state ; Signal Transduction</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</citedby><cites>FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18400794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Martino, A.</creatorcontrib><creatorcontrib>Scheres, A.</creatorcontrib><creatorcontrib>Margulies, D.S.</creatorcontrib><creatorcontrib>Kelly, A.M.C.</creatorcontrib><creatorcontrib>Uddin, L.Q.</creatorcontrib><creatorcontrib>Shehzad, Z.</creatorcontrib><creatorcontrib>Biswal, B.</creatorcontrib><creatorcontrib>Walters, J.R.</creatorcontrib><creatorcontrib>Castellanos, F.X.</creatorcontrib><creatorcontrib>Milham, M.P.</creatorcontrib><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</description><subject>Automatic Data Processing - methods</subject><subject>basal ganglia</subject><subject>Basal Ganglia - anatomy & histology</subject><subject>Basal Ganglia - physiology</subject><subject>caudate</subject><subject>Caudate Nucleus - anatomy & histology</subject><subject>Caudate Nucleus - physiology</subject><subject>Corpus Striatum - anatomy & histology</subject><subject>Corpus Striatum - physiology</subject><subject>fMRI</subject><subject>functional connectivity</subject><subject>Functional Laterality - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Neurological</subject><subject>Motor Activity - physiology</subject><subject>nucleus accumbens</subject><subject>Nucleus Accumbens - anatomy & histology</subject><subject>Nucleus Accumbens - physiology</subject><subject>putamen</subject><subject>Putamen - anatomy & histology</subject><subject>Putamen - physiology</subject><subject>Rest - physiology</subject><subject>resting state</subject><subject>Signal Transduction</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgivPX0asUD-Klmte0TeNtzM0JE8Gfw0vI0kSrazOTRtx_b6RDwYunvIQP3zzeQ2gf8AlgRk6lstLY09lLg1NYQ1uQ5jhOgLH1UOOUxiQB6KFt514xBppkySbqQZFiTFm6hYYj38i2Mo2YRwPTNCpcPqp2GRkdjX0tmui2tZVofX0W9aMb5dqqeQ5volWRvrq5DKUvl7toQ4u5U3urcwfdj4Z3g3E8ub64HPQnscySrI1nqSwoJkJJqfNEyQIgp4VkaWgFtJxphlOpSkLKUhJKS4xLKJlmQgsQGlOyg4663IU17z40w-vKSTWfi0YZ73jOKAtpyb8QWIZpCAzw8A98Nd6GaXybghaMJhBQ3CFpjXNWab6wVS3skgPm31vg3RZ4t4XgD1ahflar8levxh7AcQeMX_ybtfq7cq36_MHCvvGcEprx8fSJP04nD7fnE8KBfAEvkaEC</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Di Martino, A.</creator><creator>Scheres, A.</creator><creator>Margulies, D.S.</creator><creator>Kelly, A.M.C.</creator><creator>Uddin, L.Q.</creator><creator>Shehzad, Z.</creator><creator>Biswal, B.</creator><creator>Walters, J.R.</creator><creator>Castellanos, F.X.</creator><creator>Milham, M.P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Functional Connectivity of Human Striatum: A Resting State fMRI Study</title><author>Di Martino, A. ; Scheres, A. ; Margulies, D.S. ; Kelly, A.M.C. ; Uddin, L.Q. ; Shehzad, Z. ; Biswal, B. ; Walters, J.R. ; Castellanos, F.X. ; Milham, M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-b4c8703aeccf62ec811678c947941fcbf904ced33ddc377d00d1d9f9afa1af073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic Data Processing - methods</topic><topic>basal ganglia</topic><topic>Basal Ganglia - anatomy & histology</topic><topic>Basal Ganglia - physiology</topic><topic>caudate</topic><topic>Caudate Nucleus - anatomy & histology</topic><topic>Caudate Nucleus - physiology</topic><topic>Corpus Striatum - anatomy & histology</topic><topic>Corpus Striatum - physiology</topic><topic>fMRI</topic><topic>functional connectivity</topic><topic>Functional Laterality - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Neurological</topic><topic>Motor Activity - physiology</topic><topic>nucleus accumbens</topic><topic>Nucleus Accumbens - anatomy & histology</topic><topic>Nucleus Accumbens - physiology</topic><topic>putamen</topic><topic>Putamen - anatomy & histology</topic><topic>Putamen - physiology</topic><topic>Rest - physiology</topic><topic>resting state</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Martino, A.</creatorcontrib><creatorcontrib>Scheres, A.</creatorcontrib><creatorcontrib>Margulies, D.S.</creatorcontrib><creatorcontrib>Kelly, A.M.C.</creatorcontrib><creatorcontrib>Uddin, L.Q.</creatorcontrib><creatorcontrib>Shehzad, Z.</creatorcontrib><creatorcontrib>Biswal, B.</creatorcontrib><creatorcontrib>Walters, J.R.</creatorcontrib><creatorcontrib>Castellanos, F.X.</creatorcontrib><creatorcontrib>Milham, M.P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Martino, A.</au><au>Scheres, A.</au><au>Margulies, D.S.</au><au>Kelly, A.M.C.</au><au>Uddin, L.Q.</au><au>Shehzad, Z.</au><au>Biswal, B.</au><au>Walters, J.R.</au><au>Castellanos, F.X.</au><au>Milham, M.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Connectivity of Human Striatum: A Resting State fMRI Study</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>18</volume><issue>12</issue><spage>2735</spage><epage>2747</epage><pages>2735-2747</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Classically regarded as motor structures, the basal ganglia subserve a wide range of functions, including motor, cognitive, motivational, and emotional processes. Consistent with this broad-reaching involvement in brain function, basal ganglia dysfunction has been implicated in numerous neurological and psychiatric disorders. Despite recent advances in human neuroimaging, models of basal ganglia circuitry continue to rely primarily upon inference from animal studies. Here, we provide a comprehensive functional connectivity analysis of basal ganglia circuitry in humans through a functional magnetic resonance imaging examination during rest. Voxelwise regression analyses substantiated the hypothesized motor, cognitive, and affective divisions among striatal subregions, and provided in vivo evidence of a functional organization consistent with parallel and integrative loop models described in animals. Our findings also revealed subtler distinctions within striatal subregions not previously appreciated by task-based imaging approaches. For instance, the inferior ventral striatum is functionally connected with medial portions of orbitofrontal cortex, whereas a more superior ventral striatal seed is associated with medial and lateral portions. The ability to map multiple distinct striatal circuits in a single study in humans, as opposed to relying on meta-analyses of multiple studies, is a principal strength of resting state functional magnetic resonance imaging. This approach holds promise for studying basal ganglia dysfunction in clinical disorders.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>18400794</pmid><doi>10.1093/cercor/bhn041</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2008-12, Vol.18 (12), p.2735-2747 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_69799472 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Automatic Data Processing - methods basal ganglia Basal Ganglia - anatomy & histology Basal Ganglia - physiology caudate Caudate Nucleus - anatomy & histology Caudate Nucleus - physiology Corpus Striatum - anatomy & histology Corpus Striatum - physiology fMRI functional connectivity Functional Laterality - physiology Humans Magnetic Resonance Imaging Models, Neurological Motor Activity - physiology nucleus accumbens Nucleus Accumbens - anatomy & histology Nucleus Accumbens - physiology putamen Putamen - anatomy & histology Putamen - physiology Rest - physiology resting state Signal Transduction |
title | Functional Connectivity of Human Striatum: A Resting State fMRI Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Connectivity%20of%20Human%20Striatum:%20A%20Resting%20State%20fMRI%20Study&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Di%20Martino,%20A.&rft.date=2008-12-01&rft.volume=18&rft.issue=12&rft.spage=2735&rft.epage=2747&rft.pages=2735-2747&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhn041&rft_dat=%3Cproquest_cross%3E19507073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198789721&rft_id=info:pmid/18400794&rft_oup_id=10.1093/cercor/bhn041&rfr_iscdi=true |