Direct functional assessment of the composite phenotype through multivariate projection strategies
We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate...
Gespeichert in:
Veröffentlicht in: | Genomics (San Diego, Calif.) Calif.), 2008-12, Vol.92 (6), p.373-383 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 6 |
container_start_page | 373 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 92 |
creator | Conesa, Ana Bro, Rasmus García-García, Francisco Prats, José Manuel Götz, Stefan Kjeldahl, Karin Montaner, David Dopazo, Joaquín |
description | We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches. |
doi_str_mv | 10.1016/j.ygeno.2008.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69797888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754308001262</els_id><sourcerecordid>19562746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</originalsourceid><addsrcrecordid>eNqFkU1v4yAQhtGqq03a3V-wUuVTb3bBxhgOPVT9lir1sntGBIaEyDYp4Ej59yUfUm_tCemdZ94Z5kXoL8EVwYRdr6vdEkZf1RjzCrcVJu0PNCeYi5Izys7QHHPOy66lzQydx7jGGIuG17_QjHDW1rk4R4t7F0Cnwk6jTs6Pqi9UjBDjAGMqvC3SCgrth42PLkGxWeWJabeBrAc_LVfFMPXJbVVwal8Ofg0HnyKmkJWlg_gb_bSqj_Dn9F6g_48P_-6ey9e3p5e729dSUyFS2RFrayNUYw0VRhkKhNmamJYvbEepIA3DtK1FlhtGubDcLhpOMFYatIGuuUBXR9-8xfsEMcnBRQ19r0bwU5RMdKLLn_4WJKJldUdZBpsjqIOPMYCVm-AGFXaSYLnPQK7lIQO5z0DiVuYMctflyX5aDGA-e05Hz8DNEYB8ja2DIKN2MGowhyyk8e7LAR-6hZv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19562746</pqid></control><display><type>article</type><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</creator><creatorcontrib>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</creatorcontrib><description>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2008.05.015</identifier><identifier>PMID: 18652888</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Breast Neoplasms - genetics ; Computational Biology - methods ; Data integration ; Databases, Genetic ; Female ; Functional genomics ; Gene annotation ; Gene Expression Profiling - statistics & numerical data ; Gene ontology ; Humans ; Mathematical Computing ; Multivariate Analysis ; Multivariate regression ; Partial least squares ; Phenotype ; Principal component analysis</subject><ispartof>Genomics (San Diego, Calif.), 2008-12, Vol.92 (6), p.373-383</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</citedby><cites>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2008.05.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18652888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Bro, Rasmus</creatorcontrib><creatorcontrib>García-García, Francisco</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Götz, Stefan</creatorcontrib><creatorcontrib>Kjeldahl, Karin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</description><subject>Breast Neoplasms - genetics</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Functional genomics</subject><subject>Gene annotation</subject><subject>Gene Expression Profiling - statistics & numerical data</subject><subject>Gene ontology</subject><subject>Humans</subject><subject>Mathematical Computing</subject><subject>Multivariate Analysis</subject><subject>Multivariate regression</subject><subject>Partial least squares</subject><subject>Phenotype</subject><subject>Principal component analysis</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v4yAQhtGqq03a3V-wUuVTb3bBxhgOPVT9lir1sntGBIaEyDYp4Ej59yUfUm_tCemdZ94Z5kXoL8EVwYRdr6vdEkZf1RjzCrcVJu0PNCeYi5Izys7QHHPOy66lzQydx7jGGIuG17_QjHDW1rk4R4t7F0Cnwk6jTs6Pqi9UjBDjAGMqvC3SCgrth42PLkGxWeWJabeBrAc_LVfFMPXJbVVwal8Ofg0HnyKmkJWlg_gb_bSqj_Dn9F6g_48P_-6ey9e3p5e729dSUyFS2RFrayNUYw0VRhkKhNmamJYvbEepIA3DtK1FlhtGubDcLhpOMFYatIGuuUBXR9-8xfsEMcnBRQ19r0bwU5RMdKLLn_4WJKJldUdZBpsjqIOPMYCVm-AGFXaSYLnPQK7lIQO5z0DiVuYMctflyX5aDGA-e05Hz8DNEYB8ja2DIKN2MGowhyyk8e7LAR-6hZv1</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Conesa, Ana</creator><creator>Bro, Rasmus</creator><creator>García-García, Francisco</creator><creator>Prats, José Manuel</creator><creator>Götz, Stefan</creator><creator>Kjeldahl, Karin</creator><creator>Montaner, David</creator><creator>Dopazo, Joaquín</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><author>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Breast Neoplasms - genetics</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Functional genomics</topic><topic>Gene annotation</topic><topic>Gene Expression Profiling - statistics & numerical data</topic><topic>Gene ontology</topic><topic>Humans</topic><topic>Mathematical Computing</topic><topic>Multivariate Analysis</topic><topic>Multivariate regression</topic><topic>Partial least squares</topic><topic>Phenotype</topic><topic>Principal component analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Bro, Rasmus</creatorcontrib><creatorcontrib>García-García, Francisco</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Götz, Stefan</creatorcontrib><creatorcontrib>Kjeldahl, Karin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conesa, Ana</au><au>Bro, Rasmus</au><au>García-García, Francisco</au><au>Prats, José Manuel</au><au>Götz, Stefan</au><au>Kjeldahl, Karin</au><au>Montaner, David</au><au>Dopazo, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct functional assessment of the composite phenotype through multivariate projection strategies</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>92</volume><issue>6</issue><spage>373</spage><epage>383</epage><pages>373-383</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18652888</pmid><doi>10.1016/j.ygeno.2008.05.015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2008-12, Vol.92 (6), p.373-383 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_69797888 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Breast Neoplasms - genetics Computational Biology - methods Data integration Databases, Genetic Female Functional genomics Gene annotation Gene Expression Profiling - statistics & numerical data Gene ontology Humans Mathematical Computing Multivariate Analysis Multivariate regression Partial least squares Phenotype Principal component analysis |
title | Direct functional assessment of the composite phenotype through multivariate projection strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20functional%20assessment%20of%20the%20composite%20phenotype%20through%20multivariate%20projection%20strategies&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Conesa,%20Ana&rft.date=2008-12-01&rft.volume=92&rft.issue=6&rft.spage=373&rft.epage=383&rft.pages=373-383&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2008.05.015&rft_dat=%3Cproquest_cross%3E19562746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19562746&rft_id=info:pmid/18652888&rft_els_id=S0888754308001262&rfr_iscdi=true |