Direct functional assessment of the composite phenotype through multivariate projection strategies

We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2008-12, Vol.92 (6), p.373-383
Hauptverfasser: Conesa, Ana, Bro, Rasmus, García-García, Francisco, Prats, José Manuel, Götz, Stefan, Kjeldahl, Karin, Montaner, David, Dopazo, Joaquín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 6
container_start_page 373
container_title Genomics (San Diego, Calif.)
container_volume 92
creator Conesa, Ana
Bro, Rasmus
García-García, Francisco
Prats, José Manuel
Götz, Stefan
Kjeldahl, Karin
Montaner, David
Dopazo, Joaquín
description We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.
doi_str_mv 10.1016/j.ygeno.2008.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69797888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754308001262</els_id><sourcerecordid>19562746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</originalsourceid><addsrcrecordid>eNqFkU1v4yAQhtGqq03a3V-wUuVTb3bBxhgOPVT9lir1sntGBIaEyDYp4Ej59yUfUm_tCemdZ94Z5kXoL8EVwYRdr6vdEkZf1RjzCrcVJu0PNCeYi5Izys7QHHPOy66lzQydx7jGGIuG17_QjHDW1rk4R4t7F0Cnwk6jTs6Pqi9UjBDjAGMqvC3SCgrth42PLkGxWeWJabeBrAc_LVfFMPXJbVVwal8Ofg0HnyKmkJWlg_gb_bSqj_Dn9F6g_48P_-6ey9e3p5e729dSUyFS2RFrayNUYw0VRhkKhNmamJYvbEepIA3DtK1FlhtGubDcLhpOMFYatIGuuUBXR9-8xfsEMcnBRQ19r0bwU5RMdKLLn_4WJKJldUdZBpsjqIOPMYCVm-AGFXaSYLnPQK7lIQO5z0DiVuYMctflyX5aDGA-e05Hz8DNEYB8ja2DIKN2MGowhyyk8e7LAR-6hZv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19562746</pqid></control><display><type>article</type><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</creator><creatorcontrib>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</creatorcontrib><description>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2008.05.015</identifier><identifier>PMID: 18652888</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Breast Neoplasms - genetics ; Computational Biology - methods ; Data integration ; Databases, Genetic ; Female ; Functional genomics ; Gene annotation ; Gene Expression Profiling - statistics &amp; numerical data ; Gene ontology ; Humans ; Mathematical Computing ; Multivariate Analysis ; Multivariate regression ; Partial least squares ; Phenotype ; Principal component analysis</subject><ispartof>Genomics (San Diego, Calif.), 2008-12, Vol.92 (6), p.373-383</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</citedby><cites>FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2008.05.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18652888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Bro, Rasmus</creatorcontrib><creatorcontrib>García-García, Francisco</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Götz, Stefan</creatorcontrib><creatorcontrib>Kjeldahl, Karin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</description><subject>Breast Neoplasms - genetics</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Functional genomics</subject><subject>Gene annotation</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Gene ontology</subject><subject>Humans</subject><subject>Mathematical Computing</subject><subject>Multivariate Analysis</subject><subject>Multivariate regression</subject><subject>Partial least squares</subject><subject>Phenotype</subject><subject>Principal component analysis</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v4yAQhtGqq03a3V-wUuVTb3bBxhgOPVT9lir1sntGBIaEyDYp4Ej59yUfUm_tCemdZ94Z5kXoL8EVwYRdr6vdEkZf1RjzCrcVJu0PNCeYi5Izys7QHHPOy66lzQydx7jGGIuG17_QjHDW1rk4R4t7F0Cnwk6jTs6Pqi9UjBDjAGMqvC3SCgrth42PLkGxWeWJabeBrAc_LVfFMPXJbVVwal8Ofg0HnyKmkJWlg_gb_bSqj_Dn9F6g_48P_-6ey9e3p5e729dSUyFS2RFrayNUYw0VRhkKhNmamJYvbEepIA3DtK1FlhtGubDcLhpOMFYatIGuuUBXR9-8xfsEMcnBRQ19r0bwU5RMdKLLn_4WJKJldUdZBpsjqIOPMYCVm-AGFXaSYLnPQK7lIQO5z0DiVuYMctflyX5aDGA-e05Hz8DNEYB8ja2DIKN2MGowhyyk8e7LAR-6hZv1</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Conesa, Ana</creator><creator>Bro, Rasmus</creator><creator>García-García, Francisco</creator><creator>Prats, José Manuel</creator><creator>Götz, Stefan</creator><creator>Kjeldahl, Karin</creator><creator>Montaner, David</creator><creator>Dopazo, Joaquín</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Direct functional assessment of the composite phenotype through multivariate projection strategies</title><author>Conesa, Ana ; Bro, Rasmus ; García-García, Francisco ; Prats, José Manuel ; Götz, Stefan ; Kjeldahl, Karin ; Montaner, David ; Dopazo, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-71ff2d9a3fd49dad4e16f21d58bf744913604529e1636489f8fb38100acecde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Breast Neoplasms - genetics</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Functional genomics</topic><topic>Gene annotation</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Gene ontology</topic><topic>Humans</topic><topic>Mathematical Computing</topic><topic>Multivariate Analysis</topic><topic>Multivariate regression</topic><topic>Partial least squares</topic><topic>Phenotype</topic><topic>Principal component analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Bro, Rasmus</creatorcontrib><creatorcontrib>García-García, Francisco</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Götz, Stefan</creatorcontrib><creatorcontrib>Kjeldahl, Karin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Dopazo, Joaquín</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conesa, Ana</au><au>Bro, Rasmus</au><au>García-García, Francisco</au><au>Prats, José Manuel</au><au>Götz, Stefan</au><au>Kjeldahl, Karin</au><au>Montaner, David</au><au>Dopazo, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct functional assessment of the composite phenotype through multivariate projection strategies</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>92</volume><issue>6</issue><spage>373</spage><epage>383</epage><pages>373-383</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>We present a novel approach for the analysis of transcriptomics data that integrates functional annotation of gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional features to a multivariate space of response phenotypical variables. Multivariate projection methods are used to obtain new correlated variables for a set of genes that share a given function. These new functional variables are then related to the response variables of interest. The analysis of the principal directions of the multivariate regression allows for the identification of gene function features correlated with the phenotype. Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the methodology. We demonstrate the superiority of the proposed method over equivalent approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18652888</pmid><doi>10.1016/j.ygeno.2008.05.015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2008-12, Vol.92 (6), p.373-383
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_69797888
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Breast Neoplasms - genetics
Computational Biology - methods
Data integration
Databases, Genetic
Female
Functional genomics
Gene annotation
Gene Expression Profiling - statistics & numerical data
Gene ontology
Humans
Mathematical Computing
Multivariate Analysis
Multivariate regression
Partial least squares
Phenotype
Principal component analysis
title Direct functional assessment of the composite phenotype through multivariate projection strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20functional%20assessment%20of%20the%20composite%20phenotype%20through%20multivariate%20projection%20strategies&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Conesa,%20Ana&rft.date=2008-12-01&rft.volume=92&rft.issue=6&rft.spage=373&rft.epage=383&rft.pages=373-383&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2008.05.015&rft_dat=%3Cproquest_cross%3E19562746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19562746&rft_id=info:pmid/18652888&rft_els_id=S0888754308001262&rfr_iscdi=true