Schwann cell development in embryonic mouse nerves
Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about t...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 1999-05, Vol.56 (4), p.334-348 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 4 |
container_start_page | 334 |
container_title | Journal of neuroscience research |
container_volume | 56 |
creator | Dong, Ziping Sinanan, Andrea Parkinson, David Parmantier, Eric Mirsky, Rhona Jessen, Kristján R. |
description | Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1097-4547(19990515)56:4<334::AID-JNR2>3.0.CO;2-# |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69781408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69781408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</originalsourceid><addsrcrecordid>eNqFkN9r1EAQgBdR7Fn9FyQgSPuQc3ZnN5ucUmijrSelJ7Yq-DIkmwmm5sc1e9d6_72JV6vQB5-WhZnvGz4hDiRMJYB6tXc-T-f7EhIbaqPtnkySBIw0-yaa6TeIejY7nL8NP5x9Ugc4hWm6eK3CFw_E5G7loZgARhBqkGpHPPH-EgCSxOBjsSMBNVitJkKdu-83WdsGjus6KPia627ZcLsKqjbgJu83XVu5oOnWnoOW-2v2T8WjMqs9P7t9d8Xn43cX6fvwdHEyTw9PQ4coVYhcaBeZuFBWlZZjic5mEmSeowObG8xVXmY2zxmNinRstSxKxwVHRmUFF7grXm65y767WrNfUVP58cys5eEcihIbSw3xMHixHXR9533PJS37qsn6DUmgsSbRWJPGNDSmoT81yUSkaahJNNSksSYhAaULUgP2-a1_nTdc_APdxvvrvalq3tyT_td5T_n7N2DDLbbyK_55h836HxRZtIa-np3QR5DHR18s0jf8BVQCnTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69781408</pqid></control><display><type>article</type><title>Schwann cell development in embryonic mouse nerves</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</creator><creatorcontrib>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</creatorcontrib><description>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/(SICI)1097-4547(19990515)56:4<334::AID-JNR2>3.0.CO;2-#</identifier><identifier>PMID: 10340742</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Animals ; Apoptosis - drug effects ; Autocrine Communication ; Calcium-Calmodulin-Dependent Protein Kinases - antagonists & inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cell Differentiation - drug effects ; Cell Division - drug effects ; Cell Lineage - drug effects ; Cell Separation ; Cell Survival - drug effects ; Cells, Cultured ; DNA - biosynthesis ; Embryo, Mammalian - cytology ; Embryo, Mammalian - innervation ; Fibroblast Growth Factor 2 - pharmacology ; Glycoproteins - pharmacology ; Growth Substances - analysis ; Hindlimb - embryology ; Hindlimb - innervation ; MAP kinase ; Mice ; neuregulin ; Neuregulins ; Phosphatidylinositol 3-Kinases - antagonists & inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; PI3 kinase ; precursors ; Schwann Cells - cytology ; Schwann Cells - drug effects ; Sciatic Nerve - cytology ; Sciatic Nerve - embryology ; Stem Cells - cytology ; Stem Cells - drug effects ; transgenic</subject><ispartof>Journal of neuroscience research, 1999-05, Vol.56 (4), p.334-348</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-4547%2819990515%2956%3A4%3C334%3A%3AAID-JNR2%3E3.0.CO%3B2-%23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-4547%2819990515%2956%3A4%3C334%3A%3AAID-JNR2%3E3.0.CO%3B2-%23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10340742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Ziping</creatorcontrib><creatorcontrib>Sinanan, Andrea</creatorcontrib><creatorcontrib>Parkinson, David</creatorcontrib><creatorcontrib>Parmantier, Eric</creatorcontrib><creatorcontrib>Mirsky, Rhona</creatorcontrib><creatorcontrib>Jessen, Kristján R.</creatorcontrib><title>Schwann cell development in embryonic mouse nerves</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Autocrine Communication</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - antagonists & inhibitors</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Division - drug effects</subject><subject>Cell Lineage - drug effects</subject><subject>Cell Separation</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>DNA - biosynthesis</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - innervation</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Glycoproteins - pharmacology</subject><subject>Growth Substances - analysis</subject><subject>Hindlimb - embryology</subject><subject>Hindlimb - innervation</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>neuregulin</subject><subject>Neuregulins</subject><subject>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>PI3 kinase</subject><subject>precursors</subject><subject>Schwann Cells - cytology</subject><subject>Schwann Cells - drug effects</subject><subject>Sciatic Nerve - cytology</subject><subject>Sciatic Nerve - embryology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>transgenic</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9r1EAQgBdR7Fn9FyQgSPuQc3ZnN5ucUmijrSelJ7Yq-DIkmwmm5sc1e9d6_72JV6vQB5-WhZnvGz4hDiRMJYB6tXc-T-f7EhIbaqPtnkySBIw0-yaa6TeIejY7nL8NP5x9Ugc4hWm6eK3CFw_E5G7loZgARhBqkGpHPPH-EgCSxOBjsSMBNVitJkKdu-83WdsGjus6KPia627ZcLsKqjbgJu83XVu5oOnWnoOW-2v2T8WjMqs9P7t9d8Xn43cX6fvwdHEyTw9PQ4coVYhcaBeZuFBWlZZjic5mEmSeowObG8xVXmY2zxmNinRstSxKxwVHRmUFF7grXm65y767WrNfUVP58cys5eEcihIbSw3xMHixHXR9533PJS37qsn6DUmgsSbRWJPGNDSmoT81yUSkaahJNNSksSYhAaULUgP2-a1_nTdc_APdxvvrvalq3tyT_td5T_n7N2DDLbbyK_55h836HxRZtIa-np3QR5DHR18s0jf8BVQCnTU</recordid><startdate>19990515</startdate><enddate>19990515</enddate><creator>Dong, Ziping</creator><creator>Sinanan, Andrea</creator><creator>Parkinson, David</creator><creator>Parmantier, Eric</creator><creator>Mirsky, Rhona</creator><creator>Jessen, Kristján R.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990515</creationdate><title>Schwann cell development in embryonic mouse nerves</title><author>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Autocrine Communication</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - antagonists & inhibitors</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Division - drug effects</topic><topic>Cell Lineage - drug effects</topic><topic>Cell Separation</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>DNA - biosynthesis</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - innervation</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Glycoproteins - pharmacology</topic><topic>Growth Substances - analysis</topic><topic>Hindlimb - embryology</topic><topic>Hindlimb - innervation</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>neuregulin</topic><topic>Neuregulins</topic><topic>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>PI3 kinase</topic><topic>precursors</topic><topic>Schwann Cells - cytology</topic><topic>Schwann Cells - drug effects</topic><topic>Sciatic Nerve - cytology</topic><topic>Sciatic Nerve - embryology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>transgenic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Ziping</creatorcontrib><creatorcontrib>Sinanan, Andrea</creatorcontrib><creatorcontrib>Parkinson, David</creatorcontrib><creatorcontrib>Parmantier, Eric</creatorcontrib><creatorcontrib>Mirsky, Rhona</creatorcontrib><creatorcontrib>Jessen, Kristján R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Ziping</au><au>Sinanan, Andrea</au><au>Parkinson, David</au><au>Parmantier, Eric</au><au>Mirsky, Rhona</au><au>Jessen, Kristján R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schwann cell development in embryonic mouse nerves</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>1999-05-15</date><risdate>1999</risdate><volume>56</volume><issue>4</issue><spage>334</spage><epage>348</epage><pages>334-348</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10340742</pmid><doi>10.1002/(SICI)1097-4547(19990515)56:4<334::AID-JNR2>3.0.CO;2-#</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 1999-05, Vol.56 (4), p.334-348 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_proquest_miscellaneous_69781408 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Apoptosis - drug effects Autocrine Communication Calcium-Calmodulin-Dependent Protein Kinases - antagonists & inhibitors Calcium-Calmodulin-Dependent Protein Kinases - metabolism Cell Differentiation - drug effects Cell Division - drug effects Cell Lineage - drug effects Cell Separation Cell Survival - drug effects Cells, Cultured DNA - biosynthesis Embryo, Mammalian - cytology Embryo, Mammalian - innervation Fibroblast Growth Factor 2 - pharmacology Glycoproteins - pharmacology Growth Substances - analysis Hindlimb - embryology Hindlimb - innervation MAP kinase Mice neuregulin Neuregulins Phosphatidylinositol 3-Kinases - antagonists & inhibitors Phosphatidylinositol 3-Kinases - metabolism PI3 kinase precursors Schwann Cells - cytology Schwann Cells - drug effects Sciatic Nerve - cytology Sciatic Nerve - embryology Stem Cells - cytology Stem Cells - drug effects transgenic |
title | Schwann cell development in embryonic mouse nerves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schwann%20cell%20development%20in%20embryonic%20mouse%20nerves&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Dong,%20Ziping&rft.date=1999-05-15&rft.volume=56&rft.issue=4&rft.spage=334&rft.epage=348&rft.pages=334-348&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/(SICI)1097-4547(19990515)56:4%3C334::AID-JNR2%3E3.0.CO;2-%23&rft_dat=%3Cproquest_cross%3E69781408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69781408&rft_id=info:pmid/10340742&rfr_iscdi=true |