Schwann cell development in embryonic mouse nerves

Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 1999-05, Vol.56 (4), p.334-348
Hauptverfasser: Dong, Ziping, Sinanan, Andrea, Parkinson, David, Parmantier, Eric, Mirsky, Rhona, Jessen, Kristján R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 4
container_start_page 334
container_title Journal of neuroscience research
container_volume 56
creator Dong, Ziping
Sinanan, Andrea
Parkinson, David
Parmantier, Eric
Mirsky, Rhona
Jessen, Kristján R.
description Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1097-4547(19990515)56:4<334::AID-JNR2>3.0.CO;2-#
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69781408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69781408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</originalsourceid><addsrcrecordid>eNqFkN9r1EAQgBdR7Fn9FyQgSPuQc3ZnN5ucUmijrSelJ7Yq-DIkmwmm5sc1e9d6_72JV6vQB5-WhZnvGz4hDiRMJYB6tXc-T-f7EhIbaqPtnkySBIw0-yaa6TeIejY7nL8NP5x9Ugc4hWm6eK3CFw_E5G7loZgARhBqkGpHPPH-EgCSxOBjsSMBNVitJkKdu-83WdsGjus6KPia627ZcLsKqjbgJu83XVu5oOnWnoOW-2v2T8WjMqs9P7t9d8Xn43cX6fvwdHEyTw9PQ4coVYhcaBeZuFBWlZZjic5mEmSeowObG8xVXmY2zxmNinRstSxKxwVHRmUFF7grXm65y767WrNfUVP58cys5eEcihIbSw3xMHixHXR9533PJS37qsn6DUmgsSbRWJPGNDSmoT81yUSkaahJNNSksSYhAaULUgP2-a1_nTdc_APdxvvrvalq3tyT_td5T_n7N2DDLbbyK_55h836HxRZtIa-np3QR5DHR18s0jf8BVQCnTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69781408</pqid></control><display><type>article</type><title>Schwann cell development in embryonic mouse nerves</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</creator><creatorcontrib>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</creatorcontrib><description>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/(SICI)1097-4547(19990515)56:4&lt;334::AID-JNR2&gt;3.0.CO;2-#</identifier><identifier>PMID: 10340742</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Apoptosis - drug effects ; Autocrine Communication ; Calcium-Calmodulin-Dependent Protein Kinases - antagonists &amp; inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cell Differentiation - drug effects ; Cell Division - drug effects ; Cell Lineage - drug effects ; Cell Separation ; Cell Survival - drug effects ; Cells, Cultured ; DNA - biosynthesis ; Embryo, Mammalian - cytology ; Embryo, Mammalian - innervation ; Fibroblast Growth Factor 2 - pharmacology ; Glycoproteins - pharmacology ; Growth Substances - analysis ; Hindlimb - embryology ; Hindlimb - innervation ; MAP kinase ; Mice ; neuregulin ; Neuregulins ; Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors ; Phosphatidylinositol 3-Kinases - metabolism ; PI3 kinase ; precursors ; Schwann Cells - cytology ; Schwann Cells - drug effects ; Sciatic Nerve - cytology ; Sciatic Nerve - embryology ; Stem Cells - cytology ; Stem Cells - drug effects ; transgenic</subject><ispartof>Journal of neuroscience research, 1999-05, Vol.56 (4), p.334-348</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-4547%2819990515%2956%3A4%3C334%3A%3AAID-JNR2%3E3.0.CO%3B2-%23$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-4547%2819990515%2956%3A4%3C334%3A%3AAID-JNR2%3E3.0.CO%3B2-%23$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10340742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Ziping</creatorcontrib><creatorcontrib>Sinanan, Andrea</creatorcontrib><creatorcontrib>Parkinson, David</creatorcontrib><creatorcontrib>Parmantier, Eric</creatorcontrib><creatorcontrib>Mirsky, Rhona</creatorcontrib><creatorcontrib>Jessen, Kristján R.</creatorcontrib><title>Schwann cell development in embryonic mouse nerves</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Autocrine Communication</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - antagonists &amp; inhibitors</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Division - drug effects</subject><subject>Cell Lineage - drug effects</subject><subject>Cell Separation</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>DNA - biosynthesis</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - innervation</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Glycoproteins - pharmacology</subject><subject>Growth Substances - analysis</subject><subject>Hindlimb - embryology</subject><subject>Hindlimb - innervation</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>neuregulin</subject><subject>Neuregulins</subject><subject>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>PI3 kinase</subject><subject>precursors</subject><subject>Schwann Cells - cytology</subject><subject>Schwann Cells - drug effects</subject><subject>Sciatic Nerve - cytology</subject><subject>Sciatic Nerve - embryology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>transgenic</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9r1EAQgBdR7Fn9FyQgSPuQc3ZnN5ucUmijrSelJ7Yq-DIkmwmm5sc1e9d6_72JV6vQB5-WhZnvGz4hDiRMJYB6tXc-T-f7EhIbaqPtnkySBIw0-yaa6TeIejY7nL8NP5x9Ugc4hWm6eK3CFw_E5G7loZgARhBqkGpHPPH-EgCSxOBjsSMBNVitJkKdu-83WdsGjus6KPia627ZcLsKqjbgJu83XVu5oOnWnoOW-2v2T8WjMqs9P7t9d8Xn43cX6fvwdHEyTw9PQ4coVYhcaBeZuFBWlZZjic5mEmSeowObG8xVXmY2zxmNinRstSxKxwVHRmUFF7grXm65y767WrNfUVP58cys5eEcihIbSw3xMHixHXR9533PJS37qsn6DUmgsSbRWJPGNDSmoT81yUSkaahJNNSksSYhAaULUgP2-a1_nTdc_APdxvvrvalq3tyT_td5T_n7N2DDLbbyK_55h836HxRZtIa-np3QR5DHR18s0jf8BVQCnTU</recordid><startdate>19990515</startdate><enddate>19990515</enddate><creator>Dong, Ziping</creator><creator>Sinanan, Andrea</creator><creator>Parkinson, David</creator><creator>Parmantier, Eric</creator><creator>Mirsky, Rhona</creator><creator>Jessen, Kristján R.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990515</creationdate><title>Schwann cell development in embryonic mouse nerves</title><author>Dong, Ziping ; Sinanan, Andrea ; Parkinson, David ; Parmantier, Eric ; Mirsky, Rhona ; Jessen, Kristján R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-3ed4c658d272f7e813c7a101bb3c07b53b2bfa7bbe352648741dfcede652aded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Autocrine Communication</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - antagonists &amp; inhibitors</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Division - drug effects</topic><topic>Cell Lineage - drug effects</topic><topic>Cell Separation</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>DNA - biosynthesis</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - innervation</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Glycoproteins - pharmacology</topic><topic>Growth Substances - analysis</topic><topic>Hindlimb - embryology</topic><topic>Hindlimb - innervation</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>neuregulin</topic><topic>Neuregulins</topic><topic>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>PI3 kinase</topic><topic>precursors</topic><topic>Schwann Cells - cytology</topic><topic>Schwann Cells - drug effects</topic><topic>Sciatic Nerve - cytology</topic><topic>Sciatic Nerve - embryology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>transgenic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Ziping</creatorcontrib><creatorcontrib>Sinanan, Andrea</creatorcontrib><creatorcontrib>Parkinson, David</creatorcontrib><creatorcontrib>Parmantier, Eric</creatorcontrib><creatorcontrib>Mirsky, Rhona</creatorcontrib><creatorcontrib>Jessen, Kristján R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Ziping</au><au>Sinanan, Andrea</au><au>Parkinson, David</au><au>Parmantier, Eric</au><au>Mirsky, Rhona</au><au>Jessen, Kristján R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schwann cell development in embryonic mouse nerves</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>1999-05-15</date><risdate>1999</risdate><volume>56</volume><issue>4</issue><spage>334</spage><epage>348</epage><pages>334-348</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Previously we proposed that Schwann cell development from the neural crest is a two‐step process that involves the generation of one main intermediate cell type, the Schwann cell precursor. Until now Schwann cell precursors have only been identified in the rat, and much remains to be learned about these cells and how they generate Schwann cells. Here we identify this cell in the mouse and analyze its transition to form Schwann cells in terms of timing, molecular expression, and extracellular signals and intracellular pathways involved in survival, proliferation, and differentiation. In the mouse, the transition from precursors to Schwann cells takes place 2 days earlier than in the rat, i.e., between embryo days 12/13 and 15/16, and is accompanied by the appearance of the O4 antigen and the establishment of an autocrine survival circuit. Beta neuregulins block precursor apoptosis and support Schwann cell generation in vitro, a process that is accelerated by basic fibroblast growth factor 2. The development of Schwann cells from precursors also involves a change in the intracellular survival signals utilized by neuregulins: To block precursor death neuregulins need to signal through both the mitogen‐activated protein kinase and the phosphoinositide‐3‐kinase pathways although neuregulins support Schwann cell survival by signaling through the phosphoinositide‐3‐kinase pathway alone. Last, we describe the generation of precursor cultures from single 12‐day‐old embryos, a prerequisite for culture studies of genetically altered precursors when embryos are non‐identical with respect to the transgene in question. J. Neurosci. Res. 56:334–348, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10340742</pmid><doi>10.1002/(SICI)1097-4547(19990515)56:4&lt;334::AID-JNR2&gt;3.0.CO;2-#</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 1999-05, Vol.56 (4), p.334-348
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_69781408
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Apoptosis - drug effects
Autocrine Communication
Calcium-Calmodulin-Dependent Protein Kinases - antagonists & inhibitors
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cell Differentiation - drug effects
Cell Division - drug effects
Cell Lineage - drug effects
Cell Separation
Cell Survival - drug effects
Cells, Cultured
DNA - biosynthesis
Embryo, Mammalian - cytology
Embryo, Mammalian - innervation
Fibroblast Growth Factor 2 - pharmacology
Glycoproteins - pharmacology
Growth Substances - analysis
Hindlimb - embryology
Hindlimb - innervation
MAP kinase
Mice
neuregulin
Neuregulins
Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Phosphatidylinositol 3-Kinases - metabolism
PI3 kinase
precursors
Schwann Cells - cytology
Schwann Cells - drug effects
Sciatic Nerve - cytology
Sciatic Nerve - embryology
Stem Cells - cytology
Stem Cells - drug effects
transgenic
title Schwann cell development in embryonic mouse nerves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schwann%20cell%20development%20in%20embryonic%20mouse%20nerves&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Dong,%20Ziping&rft.date=1999-05-15&rft.volume=56&rft.issue=4&rft.spage=334&rft.epage=348&rft.pages=334-348&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/(SICI)1097-4547(19990515)56:4%3C334::AID-JNR2%3E3.0.CO;2-%23&rft_dat=%3Cproquest_cross%3E69781408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69781408&rft_id=info:pmid/10340742&rfr_iscdi=true