Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport

There are at least two photosynthetic cyclic electron transport (CET) pathways in most C₃ plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2008-11, Vol.228 (6), p.907-918
Hauptverfasser: Long, Terri A, Okegawa, Yuki, Shikanai, Toshiharu, Schmidt, Gregory W, Covert, Sarah F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue 6
container_start_page 907
container_title Planta
container_volume 228
creator Long, Terri A
Okegawa, Yuki
Shikanai, Toshiharu
Schmidt, Gregory W
Covert, Sarah F
description There are at least two photosynthetic cyclic electron transport (CET) pathways in most C₃ plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects, probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET.
doi_str_mv 10.1007/s00425-008-0789-y
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69777955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23390126</jstor_id><sourcerecordid>23390126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c9d1adc040fc2b6eacb222574fe34169e616228503c44609f49247075c21f69c3</originalsourceid><addsrcrecordid>eNp9kE2vEjEUhhuj8SL6A1yojYnuRk-_p0uCiCTkYriwbkrp4JBhiu2MCf_eXodI4sJVm_M-7_l4EXpN4BMBUJ8TAKeiACgLUKUuLk_QiHBGCwq8fIpGAPkPmok79CKlI0AWlXqO7kgpJeOKjJCdhjb5-MvvcQyNx6HC39erzeoez9eTL4vZ_QavZ_PtcrJZ5JrAdYu7Hx5Hf-gb29Wh_eN4WGB3cU3tsG-862Iud9G26Rxi9xI9q2yT_KvrO0bbr7PN9FuxXM0X08mycIKQrnB6T-zeAYfK0Z301u0opULxyjNOpPaSSEpLAcxxLkFXXFOuQAlHSSW1Y2P0ceh7juFn71NnTnVyvmls60OfjNRKKS1EBt__Ax5DH9u8m6FACONC6wyRAXIxpBR9Zc6xPtl4MQTMY_hmCN_k8M1j-OaSPW-vjfvdye9vjmvaGfhwBWxytqlyRK5OfzkKpaAqXzhGdOBSltqDj7cN_zf9zWA6pi7EW1PGNBAqs_5u0CsbjD3EPHj7kA9mQITQXDL2G2Jlq38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201134599</pqid></control><display><type>article</type><title>Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Long, Terri A ; Okegawa, Yuki ; Shikanai, Toshiharu ; Schmidt, Gregory W ; Covert, Sarah F</creator><creatorcontrib>Long, Terri A ; Okegawa, Yuki ; Shikanai, Toshiharu ; Schmidt, Gregory W ; Covert, Sarah F</creatorcontrib><description>There are at least two photosynthetic cyclic electron transport (CET) pathways in most C₃ plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects, probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-008-0789-y</identifier><identifier>PMID: 18663471</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agriculture ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - analysis ; Arabidopsis Proteins - physiology ; Biological and medical sciences ; Biomedical and Life Sciences ; Chlorophylls ; Chloroplasts ; Drought ; Ecology ; Electron Transport ; Forestry ; Fundamental and applied biological sciences. Psychology ; Glucuronidase - analysis ; Leaves ; Life Sciences ; Light ; Luminous intensity ; Original Article ; Phenotypes ; Photons ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins - analysis ; Photosynthetic Reaction Center Complex Proteins - physiology ; Photosystem I Protein Complex - physiology ; Pine trees ; Pinus taeda - metabolism ; Pinus taeda - physiology ; Plant cells ; Plant Sciences ; Plants</subject><ispartof>Planta, 2008-11, Vol.228 (6), p.907-918</ispartof><rights>Springer-Verlag Berlin Heidelberg 2008</rights><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c9d1adc040fc2b6eacb222574fe34169e616228503c44609f49247075c21f69c3</citedby><cites>FETCH-LOGICAL-c511t-c9d1adc040fc2b6eacb222574fe34169e616228503c44609f49247075c21f69c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23390126$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23390126$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20852750$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18663471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Terri A</creatorcontrib><creatorcontrib>Okegawa, Yuki</creatorcontrib><creatorcontrib>Shikanai, Toshiharu</creatorcontrib><creatorcontrib>Schmidt, Gregory W</creatorcontrib><creatorcontrib>Covert, Sarah F</creatorcontrib><title>Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>There are at least two photosynthetic cyclic electron transport (CET) pathways in most C₃ plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects, probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET.</description><subject>Agriculture</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - analysis</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>Drought</subject><subject>Ecology</subject><subject>Electron Transport</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucuronidase - analysis</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Luminous intensity</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Photosynthetic Reaction Center Complex Proteins - analysis</subject><subject>Photosynthetic Reaction Center Complex Proteins - physiology</subject><subject>Photosystem I Protein Complex - physiology</subject><subject>Pine trees</subject><subject>Pinus taeda - metabolism</subject><subject>Pinus taeda - physiology</subject><subject>Plant cells</subject><subject>Plant Sciences</subject><subject>Plants</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE2vEjEUhhuj8SL6A1yojYnuRk-_p0uCiCTkYriwbkrp4JBhiu2MCf_eXodI4sJVm_M-7_l4EXpN4BMBUJ8TAKeiACgLUKUuLk_QiHBGCwq8fIpGAPkPmok79CKlI0AWlXqO7kgpJeOKjJCdhjb5-MvvcQyNx6HC39erzeoez9eTL4vZ_QavZ_PtcrJZ5JrAdYu7Hx5Hf-gb29Wh_eN4WGB3cU3tsG-862Iud9G26Rxi9xI9q2yT_KvrO0bbr7PN9FuxXM0X08mycIKQrnB6T-zeAYfK0Z301u0opULxyjNOpPaSSEpLAcxxLkFXXFOuQAlHSSW1Y2P0ceh7juFn71NnTnVyvmls60OfjNRKKS1EBt__Ax5DH9u8m6FACONC6wyRAXIxpBR9Zc6xPtl4MQTMY_hmCN_k8M1j-OaSPW-vjfvdye9vjmvaGfhwBWxytqlyRK5OfzkKpaAqXzhGdOBSltqDj7cN_zf9zWA6pi7EW1PGNBAqs_5u0CsbjD3EPHj7kA9mQITQXDL2G2Jlq38</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Long, Terri A</creator><creator>Okegawa, Yuki</creator><creator>Shikanai, Toshiharu</creator><creator>Schmidt, Gregory W</creator><creator>Covert, Sarah F</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport</title><author>Long, Terri A ; Okegawa, Yuki ; Shikanai, Toshiharu ; Schmidt, Gregory W ; Covert, Sarah F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c9d1adc040fc2b6eacb222574fe34169e616228503c44609f49247075c21f69c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Agriculture</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - analysis</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>Drought</topic><topic>Ecology</topic><topic>Electron Transport</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucuronidase - analysis</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Luminous intensity</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Photosynthetic Reaction Center Complex Proteins - analysis</topic><topic>Photosynthetic Reaction Center Complex Proteins - physiology</topic><topic>Photosystem I Protein Complex - physiology</topic><topic>Pine trees</topic><topic>Pinus taeda - metabolism</topic><topic>Pinus taeda - physiology</topic><topic>Plant cells</topic><topic>Plant Sciences</topic><topic>Plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Terri A</creatorcontrib><creatorcontrib>Okegawa, Yuki</creatorcontrib><creatorcontrib>Shikanai, Toshiharu</creatorcontrib><creatorcontrib>Schmidt, Gregory W</creatorcontrib><creatorcontrib>Covert, Sarah F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Terri A</au><au>Okegawa, Yuki</au><au>Shikanai, Toshiharu</au><au>Schmidt, Gregory W</au><au>Covert, Sarah F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>228</volume><issue>6</issue><spage>907</spage><epage>918</epage><pages>907-918</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>There are at least two photosynthetic cyclic electron transport (CET) pathways in most C₃ plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects, probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18663471</pmid><doi>10.1007/s00425-008-0789-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2008-11, Vol.228 (6), p.907-918
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_69777955
source MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Agriculture
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - analysis
Arabidopsis Proteins - physiology
Biological and medical sciences
Biomedical and Life Sciences
Chlorophylls
Chloroplasts
Drought
Ecology
Electron Transport
Forestry
Fundamental and applied biological sciences. Psychology
Glucuronidase - analysis
Leaves
Life Sciences
Light
Luminous intensity
Original Article
Phenotypes
Photons
Photosynthesis
Photosynthetic Reaction Center Complex Proteins - analysis
Photosynthetic Reaction Center Complex Proteins - physiology
Photosystem I Protein Complex - physiology
Pine trees
Pinus taeda - metabolism
Pinus taeda - physiology
Plant cells
Plant Sciences
Plants
title Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20role%20of%20PROTON%20GRADIENT%20REGULATION%205%20in%20the%20regulation%20of%20PSI%20cyclic%20electron%20transport&rft.jtitle=Planta&rft.au=Long,%20Terri%20A&rft.date=2008-11-01&rft.volume=228&rft.issue=6&rft.spage=907&rft.epage=918&rft.pages=907-918&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-008-0789-y&rft_dat=%3Cjstor_proqu%3E23390126%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201134599&rft_id=info:pmid/18663471&rft_jstor_id=23390126&rfr_iscdi=true