Adiabatic theorem and generalized geometrical phase in the case of continuous spectra

By defining "a virtual gap" for the continuous spectrum through the notion of eigendifferential (Weyl's packet) and using the differential projector operator, we present a rigorous demonstration and discussion of the quantum adiabatic theorem for systems having a nondegenerate continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-10, Vol.101 (15), p.150407-150407, Article 150407
Hauptverfasser: Maamache, M, Saadi, Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150407
container_issue 15
container_start_page 150407
container_title Physical review letters
container_volume 101
creator Maamache, M
Saadi, Y
description By defining "a virtual gap" for the continuous spectrum through the notion of eigendifferential (Weyl's packet) and using the differential projector operator, we present a rigorous demonstration and discussion of the quantum adiabatic theorem for systems having a nondegenerate continuous spectrum. An explicit formula for a generalized geometrical phase is derived in terms of the eigenstates of the Hamiltonian. Examples are given for illustration.
doi_str_mv 10.1103/PhysRevLett.101.150407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69772415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69772415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-bf4f73f73745f207f049353fcbb9110630c09140ddb715ab80dbd0f22d791a603</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRbK2-Qtkr71Jnskk2e1mKJygoYq_DZg82kpO7G6E-vQktKAzMMPz_HD5ClggrRGB3r_uDfzPfWxPCCgFXmEIC_IzMEbiIOGJyTuYADCMBwGfkyvtPAMA4yy_JDHMhRJrDnOzWupKlDJWiYW86ZxoqW00_TGucrKsfM9VdY4KrlKxpv5fe0KqdxFRNdWep6tpQtUM3eOp7o4KT1-TCytqbm1NekN3D_fvmKdq-PD5v1ttIMRAhKm1iORuDJ6mNgVtIBEuZVWUpxi8zBgoEJqB1yTGVZQ661GDjWHOBMgO2ILfHub3rvgbjQ9FUXpm6lq0ZzykywXmcYDoKs6NQuc57Z2zRu6qR7lAgFBPQ4h_QsYfFEehoXJ42DGVj9J_tRJD9AsFXdRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69772415</pqid></control><display><type>article</type><title>Adiabatic theorem and generalized geometrical phase in the case of continuous spectra</title><source>American Physical Society Journals</source><creator>Maamache, M ; Saadi, Y</creator><creatorcontrib>Maamache, M ; Saadi, Y</creatorcontrib><description>By defining "a virtual gap" for the continuous spectrum through the notion of eigendifferential (Weyl's packet) and using the differential projector operator, we present a rigorous demonstration and discussion of the quantum adiabatic theorem for systems having a nondegenerate continuous spectrum. An explicit formula for a generalized geometrical phase is derived in terms of the eigenstates of the Hamiltonian. Examples are given for illustration.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.150407</identifier><identifier>PMID: 18999580</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-10, Vol.101 (15), p.150407-150407, Article 150407</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-bf4f73f73745f207f049353fcbb9110630c09140ddb715ab80dbd0f22d791a603</citedby><cites>FETCH-LOGICAL-c309t-bf4f73f73745f207f049353fcbb9110630c09140ddb715ab80dbd0f22d791a603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18999580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maamache, M</creatorcontrib><creatorcontrib>Saadi, Y</creatorcontrib><title>Adiabatic theorem and generalized geometrical phase in the case of continuous spectra</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By defining "a virtual gap" for the continuous spectrum through the notion of eigendifferential (Weyl's packet) and using the differential projector operator, we present a rigorous demonstration and discussion of the quantum adiabatic theorem for systems having a nondegenerate continuous spectrum. An explicit formula for a generalized geometrical phase is derived in terms of the eigenstates of the Hamiltonian. Examples are given for illustration.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AQhhdRbK2-Qtkr71Jnskk2e1mKJygoYq_DZg82kpO7G6E-vQktKAzMMPz_HD5ClggrRGB3r_uDfzPfWxPCCgFXmEIC_IzMEbiIOGJyTuYADCMBwGfkyvtPAMA4yy_JDHMhRJrDnOzWupKlDJWiYW86ZxoqW00_TGucrKsfM9VdY4KrlKxpv5fe0KqdxFRNdWep6tpQtUM3eOp7o4KT1-TCytqbm1NekN3D_fvmKdq-PD5v1ttIMRAhKm1iORuDJ6mNgVtIBEuZVWUpxi8zBgoEJqB1yTGVZQ661GDjWHOBMgO2ILfHub3rvgbjQ9FUXpm6lq0ZzykywXmcYDoKs6NQuc57Z2zRu6qR7lAgFBPQ4h_QsYfFEehoXJ42DGVj9J_tRJD9AsFXdRk</recordid><startdate>20081010</startdate><enddate>20081010</enddate><creator>Maamache, M</creator><creator>Saadi, Y</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081010</creationdate><title>Adiabatic theorem and generalized geometrical phase in the case of continuous spectra</title><author>Maamache, M ; Saadi, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-bf4f73f73745f207f049353fcbb9110630c09140ddb715ab80dbd0f22d791a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maamache, M</creatorcontrib><creatorcontrib>Saadi, Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maamache, M</au><au>Saadi, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic theorem and generalized geometrical phase in the case of continuous spectra</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-10-10</date><risdate>2008</risdate><volume>101</volume><issue>15</issue><spage>150407</spage><epage>150407</epage><pages>150407-150407</pages><artnum>150407</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By defining "a virtual gap" for the continuous spectrum through the notion of eigendifferential (Weyl's packet) and using the differential projector operator, we present a rigorous demonstration and discussion of the quantum adiabatic theorem for systems having a nondegenerate continuous spectrum. An explicit formula for a generalized geometrical phase is derived in terms of the eigenstates of the Hamiltonian. Examples are given for illustration.</abstract><cop>United States</cop><pmid>18999580</pmid><doi>10.1103/PhysRevLett.101.150407</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2008-10, Vol.101 (15), p.150407-150407, Article 150407
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_69772415
source American Physical Society Journals
title Adiabatic theorem and generalized geometrical phase in the case of continuous spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20theorem%20and%20generalized%20geometrical%20phase%20in%20the%20case%20of%20continuous%20spectra&rft.jtitle=Physical%20review%20letters&rft.au=Maamache,%20M&rft.date=2008-10-10&rft.volume=101&rft.issue=15&rft.spage=150407&rft.epage=150407&rft.pages=150407-150407&rft.artnum=150407&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.150407&rft_dat=%3Cproquest_cross%3E69772415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69772415&rft_id=info:pmid/18999580&rfr_iscdi=true