Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system

A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-10, Vol.101 (18), p.187203-187203, Article 187203
1. Verfasser: Zhang, G P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187203
container_issue 18
container_start_page 187203
container_title Physical review letters
container_volume 101
creator Zhang, G P
description A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.
doi_str_mv 10.1103/physrevlett.101.187203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69771142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69771142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</originalsourceid><addsrcrecordid>eNpFkNtKAzEQhoMotlZfoeTKu62Zze5m450UT1BQRO-EJYfZdmUPNUmrfXtTWvBqmI__n4GPkCmwGQDjN-vVzjvcthjCDBjMoBQp4ydkDEzIRABkp2TMGIdEMiZG5ML7L8YYpEV5TkZQSinLXI7J50J5dEnT241BSwenm6BaqnpL_brpKf6aCEIz9J7GtUbnhk4tewz-NgLfLFfB0zpCqmj4GZIWt9hSv_MBu0tyVqvW49VxTsjHw_37_ClZvDw-z-8WieEiD0mmTQ5YlEqDRg7ImTJKWF7k2maK55Bapa3gBZalkcamtdQZw1pDzUSWST4h14e7azd8b9CHqmu8wbZVPQ4bXxVS7I2kMVgcgsYNPvqrq7VrOuV2FbBq77V6jV7fcLuIXiOD6uA1FqfHDxvdof2vHUXyP1deecI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69771142</pqid></control><display><type>article</type><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><source>American Physical Society Journals</source><creator>Zhang, G P</creator><creatorcontrib>Zhang, G P</creatorcontrib><description>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.101.187203</identifier><identifier>PMID: 18999859</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-10, Vol.101 (18), p.187203-187203, Article 187203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</citedby><cites>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18999859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, G P</creatorcontrib><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKAzEQhoMotlZfoeTKu62Zze5m450UT1BQRO-EJYfZdmUPNUmrfXtTWvBqmI__n4GPkCmwGQDjN-vVzjvcthjCDBjMoBQp4ydkDEzIRABkp2TMGIdEMiZG5ML7L8YYpEV5TkZQSinLXI7J50J5dEnT241BSwenm6BaqnpL_brpKf6aCEIz9J7GtUbnhk4tewz-NgLfLFfB0zpCqmj4GZIWt9hSv_MBu0tyVqvW49VxTsjHw_37_ClZvDw-z-8WieEiD0mmTQ5YlEqDRg7ImTJKWF7k2maK55Bapa3gBZalkcamtdQZw1pDzUSWST4h14e7azd8b9CHqmu8wbZVPQ4bXxVS7I2kMVgcgsYNPvqrq7VrOuV2FbBq77V6jV7fcLuIXiOD6uA1FqfHDxvdof2vHUXyP1deecI</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>Zhang, G P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081031</creationdate><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><author>Zhang, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, G P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-10-31</date><risdate>2008</risdate><volume>101</volume><issue>18</issue><spage>187203</spage><epage>187203</epage><pages>187203-187203</pages><artnum>187203</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</abstract><cop>United States</cop><pmid>18999859</pmid><doi>10.1103/physrevlett.101.187203</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2008-10, Vol.101 (18), p.187203-187203, Article 187203
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_69771142
source American Physical Society Journals
title Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-induced%20orbital%20and%20spin%20excitations%20in%20ferromagnets:%20insights%20from%20a%20two-level%20system&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20G%20P&rft.date=2008-10-31&rft.volume=101&rft.issue=18&rft.spage=187203&rft.epage=187203&rft.pages=187203-187203&rft.artnum=187203&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.101.187203&rft_dat=%3Cproquest_cross%3E69771142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69771142&rft_id=info:pmid/18999859&rfr_iscdi=true