Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system
A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference ef...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2008-10, Vol.101 (18), p.187203-187203, Article 187203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187203 |
---|---|
container_issue | 18 |
container_start_page | 187203 |
container_title | Physical review letters |
container_volume | 101 |
creator | Zhang, G P |
description | A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe. |
doi_str_mv | 10.1103/physrevlett.101.187203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69771142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69771142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</originalsourceid><addsrcrecordid>eNpFkNtKAzEQhoMotlZfoeTKu62Zze5m450UT1BQRO-EJYfZdmUPNUmrfXtTWvBqmI__n4GPkCmwGQDjN-vVzjvcthjCDBjMoBQp4ydkDEzIRABkp2TMGIdEMiZG5ML7L8YYpEV5TkZQSinLXI7J50J5dEnT241BSwenm6BaqnpL_brpKf6aCEIz9J7GtUbnhk4tewz-NgLfLFfB0zpCqmj4GZIWt9hSv_MBu0tyVqvW49VxTsjHw_37_ClZvDw-z-8WieEiD0mmTQ5YlEqDRg7ImTJKWF7k2maK55Bapa3gBZalkcamtdQZw1pDzUSWST4h14e7azd8b9CHqmu8wbZVPQ4bXxVS7I2kMVgcgsYNPvqrq7VrOuV2FbBq77V6jV7fcLuIXiOD6uA1FqfHDxvdof2vHUXyP1deecI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69771142</pqid></control><display><type>article</type><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><source>American Physical Society Journals</source><creator>Zhang, G P</creator><creatorcontrib>Zhang, G P</creatorcontrib><description>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.101.187203</identifier><identifier>PMID: 18999859</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-10, Vol.101 (18), p.187203-187203, Article 187203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</citedby><cites>FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18999859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, G P</creatorcontrib><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKAzEQhoMotlZfoeTKu62Zze5m450UT1BQRO-EJYfZdmUPNUmrfXtTWvBqmI__n4GPkCmwGQDjN-vVzjvcthjCDBjMoBQp4ydkDEzIRABkp2TMGIdEMiZG5ML7L8YYpEV5TkZQSinLXI7J50J5dEnT241BSwenm6BaqnpL_brpKf6aCEIz9J7GtUbnhk4tewz-NgLfLFfB0zpCqmj4GZIWt9hSv_MBu0tyVqvW49VxTsjHw_37_ClZvDw-z-8WieEiD0mmTQ5YlEqDRg7ImTJKWF7k2maK55Bapa3gBZalkcamtdQZw1pDzUSWST4h14e7azd8b9CHqmu8wbZVPQ4bXxVS7I2kMVgcgsYNPvqrq7VrOuV2FbBq77V6jV7fcLuIXiOD6uA1FqfHDxvdof2vHUXyP1deecI</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>Zhang, G P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081031</creationdate><title>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</title><author>Zhang, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4bc51e68ab1be31e30aca7d365bd4a3512dabd736e88c9cd2f9b40efb1f074493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, G P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-10-31</date><risdate>2008</risdate><volume>101</volume><issue>18</issue><spage>187203</spage><epage>187203</epage><pages>187203-187203</pages><artnum>187203</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A recent time-resolved measurement showed that laser-induced orbital and spin excitations proceed in unison and the spin-orbit ratio is held constant during demagnetization. Here a two-level model shows that these orbital and spin excitations originate from state population and state interference effects. For an addressed state, spin and orbital dynamics are solely from the state interference, where the spin and orbital momenta oscillate with the laser frequency and match the dipole moment exactly, an unambiguous test case for the time-resolved magneto-optical Kerr effect. For an undressed state, the interference effect introduces a rapid beating in orbital momentum, which is observed in the first-principles calculation in fcc Ni. The state population change leads to a constant spin-orbit ratio, which explains the linear dependence between spin and orbital momentum changes within 2 ps upon the arrival of a pump pulse in Fe.</abstract><cop>United States</cop><pmid>18999859</pmid><doi>10.1103/physrevlett.101.187203</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2008-10, Vol.101 (18), p.187203-187203, Article 187203 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_69771142 |
source | American Physical Society Journals |
title | Laser-induced orbital and spin excitations in ferromagnets: insights from a two-level system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-induced%20orbital%20and%20spin%20excitations%20in%20ferromagnets:%20insights%20from%20a%20two-level%20system&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20G%20P&rft.date=2008-10-31&rft.volume=101&rft.issue=18&rft.spage=187203&rft.epage=187203&rft.pages=187203-187203&rft.artnum=187203&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.101.187203&rft_dat=%3Cproquest_cross%3E69771142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69771142&rft_id=info:pmid/18999859&rfr_iscdi=true |