Gene Shifting: A Novel Therapy for Mitochondrial Myopathy
Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 1999-06, Vol.8 (6), p.1047-1052 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | 6 |
container_start_page | 1047 |
container_title | Human molecular genetics |
container_volume | 8 |
creator | Taivassalo, Tanja Fu, Katherine Johns, Timothy Arnold, Douglas Karpati, George Shoubridge, Eric A. |
description | Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy. |
doi_str_mv | 10.1093/hmg/8.6.1047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69766425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69766425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</originalsourceid><addsrcrecordid>eNqF0cFP2zAUBnBrAo3CduOMIjRxWsCO7eeEW0HQUtFN05g0cbFeHYcE0rizU0T_-7lqBWiXXfxkvZ8-yZ8JOWT0lNGCn9Xzh7P8FOJFqA9kwATQNKM53yEDWoBIoaCwR_ZDeKSUgeDqI9ljlPOMchiQYmQ7m_ysm6pvuofzZJh8c8-2Te5q63GxSirnk2nTO1O7rvQNtsl05RbY16tPZLfCNtjP23lAfl1f3V2O09vvo5vL4W1qhKR9imZWMisFGk4Z5pWAAtCgAGOtMDOFmZSlpEoJYZjIJc9nyA0grI-SSn5ATja5C-_-LG3o9bwJxrYtdtYtg4ZCAYjs_5CprOCZVBEe_wMf3dJ38RE6Y4wpyIo8oq8bZLwLwdtKL3wzR7_SjOp18ToWr3MNel185EfbzOVsbst3eNN0BF-2AIPBtvLYmSa8uZyq-DeRpRvWhN6-vK7RP2lQXEk9_n2vry-m9xP1Y6In_C_P4Jhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211176298</pqid></control><display><type>article</type><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</creator><creatorcontrib>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</creatorcontrib><description>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/8.6.1047</identifier><identifier>PMID: 10332036</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Creatine Kinase - metabolism ; Diseases of striated muscles. Neuromuscular diseases ; DNA, Mitochondrial - genetics ; Exercise Therapy ; Gene Expression Regulation ; Genotype ; Humans ; Male ; Medical sciences ; Middle Aged ; Mitochondrial Myopathies - genetics ; Mitochondrial Myopathies - therapy ; Muscle Contraction ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Mutation ; Neurology ; Phenotype ; RNA, Transfer, Leu - genetics</subject><ispartof>Human molecular genetics, 1999-06, Vol.8 (6), p.1047-1052</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jun 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1807437$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10332036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taivassalo, Tanja</creatorcontrib><creatorcontrib>Fu, Katherine</creatorcontrib><creatorcontrib>Johns, Timothy</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Karpati, George</creatorcontrib><creatorcontrib>Shoubridge, Eric A.</creatorcontrib><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><title>Human molecular genetics</title><addtitle>Human Molecular Genetics</addtitle><description>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</description><subject>Biological and medical sciences</subject><subject>Creatine Kinase - metabolism</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Exercise Therapy</subject><subject>Gene Expression Regulation</subject><subject>Genotype</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Mitochondrial Myopathies - genetics</subject><subject>Mitochondrial Myopathies - therapy</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Mutation</subject><subject>Neurology</subject><subject>Phenotype</subject><subject>RNA, Transfer, Leu - genetics</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFP2zAUBnBrAo3CduOMIjRxWsCO7eeEW0HQUtFN05g0cbFeHYcE0rizU0T_-7lqBWiXXfxkvZ8-yZ8JOWT0lNGCn9Xzh7P8FOJFqA9kwATQNKM53yEDWoBIoaCwR_ZDeKSUgeDqI9ljlPOMchiQYmQ7m_ysm6pvuofzZJh8c8-2Te5q63GxSirnk2nTO1O7rvQNtsl05RbY16tPZLfCNtjP23lAfl1f3V2O09vvo5vL4W1qhKR9imZWMisFGk4Z5pWAAtCgAGOtMDOFmZSlpEoJYZjIJc9nyA0grI-SSn5ATja5C-_-LG3o9bwJxrYtdtYtg4ZCAYjs_5CprOCZVBEe_wMf3dJ38RE6Y4wpyIo8oq8bZLwLwdtKL3wzR7_SjOp18ToWr3MNel185EfbzOVsbst3eNN0BF-2AIPBtvLYmSa8uZyq-DeRpRvWhN6-vK7RP2lQXEk9_n2vry-m9xP1Y6In_C_P4Jhq</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Taivassalo, Tanja</creator><creator>Fu, Katherine</creator><creator>Johns, Timothy</creator><creator>Arnold, Douglas</creator><creator>Karpati, George</creator><creator>Shoubridge, Eric A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>19990601</creationdate><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><author>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Creatine Kinase - metabolism</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Exercise Therapy</topic><topic>Gene Expression Regulation</topic><topic>Genotype</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Mitochondrial Myopathies - genetics</topic><topic>Mitochondrial Myopathies - therapy</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Mutation</topic><topic>Neurology</topic><topic>Phenotype</topic><topic>RNA, Transfer, Leu - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taivassalo, Tanja</creatorcontrib><creatorcontrib>Fu, Katherine</creatorcontrib><creatorcontrib>Johns, Timothy</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Karpati, George</creatorcontrib><creatorcontrib>Shoubridge, Eric A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taivassalo, Tanja</au><au>Fu, Katherine</au><au>Johns, Timothy</au><au>Arnold, Douglas</au><au>Karpati, George</au><au>Shoubridge, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Human Molecular Genetics</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>8</volume><issue>6</issue><spage>1047</spage><epage>1052</epage><pages>1047-1052</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>10332036</pmid><doi>10.1093/hmg/8.6.1047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 1999-06, Vol.8 (6), p.1047-1052 |
issn | 0964-6906 1460-2083 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_69766425 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biological and medical sciences Creatine Kinase - metabolism Diseases of striated muscles. Neuromuscular diseases DNA, Mitochondrial - genetics Exercise Therapy Gene Expression Regulation Genotype Humans Male Medical sciences Middle Aged Mitochondrial Myopathies - genetics Mitochondrial Myopathies - therapy Muscle Contraction Muscle, Skeletal - enzymology Muscle, Skeletal - pathology Mutation Neurology Phenotype RNA, Transfer, Leu - genetics |
title | Gene Shifting: A Novel Therapy for Mitochondrial Myopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Shifting:%20A%20Novel%20Therapy%20for%20Mitochondrial%20Myopathy&rft.jtitle=Human%20molecular%20genetics&rft.au=Taivassalo,%20Tanja&rft.date=1999-06-01&rft.volume=8&rft.issue=6&rft.spage=1047&rft.epage=1052&rft.pages=1047-1052&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/8.6.1047&rft_dat=%3Cproquest_cross%3E69766425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211176298&rft_id=info:pmid/10332036&rfr_iscdi=true |