Gene Shifting: A Novel Therapy for Mitochondrial Myopathy

Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 1999-06, Vol.8 (6), p.1047-1052
Hauptverfasser: Taivassalo, Tanja, Fu, Katherine, Johns, Timothy, Arnold, Douglas, Karpati, George, Shoubridge, Eric A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1052
container_issue 6
container_start_page 1047
container_title Human molecular genetics
container_volume 8
creator Taivassalo, Tanja
Fu, Katherine
Johns, Timothy
Arnold, Douglas
Karpati, George
Shoubridge, Eric A.
description Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.
doi_str_mv 10.1093/hmg/8.6.1047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69766425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69766425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</originalsourceid><addsrcrecordid>eNqF0cFP2zAUBnBrAo3CduOMIjRxWsCO7eeEW0HQUtFN05g0cbFeHYcE0rizU0T_-7lqBWiXXfxkvZ8-yZ8JOWT0lNGCn9Xzh7P8FOJFqA9kwATQNKM53yEDWoBIoaCwR_ZDeKSUgeDqI9ljlPOMchiQYmQ7m_ysm6pvuofzZJh8c8-2Te5q63GxSirnk2nTO1O7rvQNtsl05RbY16tPZLfCNtjP23lAfl1f3V2O09vvo5vL4W1qhKR9imZWMisFGk4Z5pWAAtCgAGOtMDOFmZSlpEoJYZjIJc9nyA0grI-SSn5ATja5C-_-LG3o9bwJxrYtdtYtg4ZCAYjs_5CprOCZVBEe_wMf3dJ38RE6Y4wpyIo8oq8bZLwLwdtKL3wzR7_SjOp18ToWr3MNel185EfbzOVsbst3eNN0BF-2AIPBtvLYmSa8uZyq-DeRpRvWhN6-vK7RP2lQXEk9_n2vry-m9xP1Y6In_C_P4Jhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211176298</pqid></control><display><type>article</type><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</creator><creatorcontrib>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</creatorcontrib><description>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/8.6.1047</identifier><identifier>PMID: 10332036</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Creatine Kinase - metabolism ; Diseases of striated muscles. Neuromuscular diseases ; DNA, Mitochondrial - genetics ; Exercise Therapy ; Gene Expression Regulation ; Genotype ; Humans ; Male ; Medical sciences ; Middle Aged ; Mitochondrial Myopathies - genetics ; Mitochondrial Myopathies - therapy ; Muscle Contraction ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Mutation ; Neurology ; Phenotype ; RNA, Transfer, Leu - genetics</subject><ispartof>Human molecular genetics, 1999-06, Vol.8 (6), p.1047-1052</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jun 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1807437$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10332036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taivassalo, Tanja</creatorcontrib><creatorcontrib>Fu, Katherine</creatorcontrib><creatorcontrib>Johns, Timothy</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Karpati, George</creatorcontrib><creatorcontrib>Shoubridge, Eric A.</creatorcontrib><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><title>Human molecular genetics</title><addtitle>Human Molecular Genetics</addtitle><description>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</description><subject>Biological and medical sciences</subject><subject>Creatine Kinase - metabolism</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Exercise Therapy</subject><subject>Gene Expression Regulation</subject><subject>Genotype</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Mitochondrial Myopathies - genetics</subject><subject>Mitochondrial Myopathies - therapy</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Mutation</subject><subject>Neurology</subject><subject>Phenotype</subject><subject>RNA, Transfer, Leu - genetics</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFP2zAUBnBrAo3CduOMIjRxWsCO7eeEW0HQUtFN05g0cbFeHYcE0rizU0T_-7lqBWiXXfxkvZ8-yZ8JOWT0lNGCn9Xzh7P8FOJFqA9kwATQNKM53yEDWoBIoaCwR_ZDeKSUgeDqI9ljlPOMchiQYmQ7m_ysm6pvuofzZJh8c8-2Te5q63GxSirnk2nTO1O7rvQNtsl05RbY16tPZLfCNtjP23lAfl1f3V2O09vvo5vL4W1qhKR9imZWMisFGk4Z5pWAAtCgAGOtMDOFmZSlpEoJYZjIJc9nyA0grI-SSn5ATja5C-_-LG3o9bwJxrYtdtYtg4ZCAYjs_5CprOCZVBEe_wMf3dJ38RE6Y4wpyIo8oq8bZLwLwdtKL3wzR7_SjOp18ToWr3MNel185EfbzOVsbst3eNN0BF-2AIPBtvLYmSa8uZyq-DeRpRvWhN6-vK7RP2lQXEk9_n2vry-m9xP1Y6In_C_P4Jhq</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Taivassalo, Tanja</creator><creator>Fu, Katherine</creator><creator>Johns, Timothy</creator><creator>Arnold, Douglas</creator><creator>Karpati, George</creator><creator>Shoubridge, Eric A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>19990601</creationdate><title>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</title><author>Taivassalo, Tanja ; Fu, Katherine ; Johns, Timothy ; Arnold, Douglas ; Karpati, George ; Shoubridge, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-acbd1e54ac301a8f4696aca46cee4cb7a255d507744c148538ba3c6a63c6ad053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Creatine Kinase - metabolism</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Exercise Therapy</topic><topic>Gene Expression Regulation</topic><topic>Genotype</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Mitochondrial Myopathies - genetics</topic><topic>Mitochondrial Myopathies - therapy</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Mutation</topic><topic>Neurology</topic><topic>Phenotype</topic><topic>RNA, Transfer, Leu - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taivassalo, Tanja</creatorcontrib><creatorcontrib>Fu, Katherine</creatorcontrib><creatorcontrib>Johns, Timothy</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Karpati, George</creatorcontrib><creatorcontrib>Shoubridge, Eric A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taivassalo, Tanja</au><au>Fu, Katherine</au><au>Johns, Timothy</au><au>Arnold, Douglas</au><au>Karpati, George</au><au>Shoubridge, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Shifting: A Novel Therapy for Mitochondrial Myopathy</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Human Molecular Genetics</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>8</volume><issue>6</issue><spage>1047</spage><epage>1052</epage><pages>1047-1052</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA hetero-plasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs predominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of ‘gene shifting’ therapy.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>10332036</pmid><doi>10.1093/hmg/8.6.1047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 1999-06, Vol.8 (6), p.1047-1052
issn 0964-6906
1460-2083
1460-2083
language eng
recordid cdi_proquest_miscellaneous_69766425
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological and medical sciences
Creatine Kinase - metabolism
Diseases of striated muscles. Neuromuscular diseases
DNA, Mitochondrial - genetics
Exercise Therapy
Gene Expression Regulation
Genotype
Humans
Male
Medical sciences
Middle Aged
Mitochondrial Myopathies - genetics
Mitochondrial Myopathies - therapy
Muscle Contraction
Muscle, Skeletal - enzymology
Muscle, Skeletal - pathology
Mutation
Neurology
Phenotype
RNA, Transfer, Leu - genetics
title Gene Shifting: A Novel Therapy for Mitochondrial Myopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Shifting:%20A%20Novel%20Therapy%20for%20Mitochondrial%20Myopathy&rft.jtitle=Human%20molecular%20genetics&rft.au=Taivassalo,%20Tanja&rft.date=1999-06-01&rft.volume=8&rft.issue=6&rft.spage=1047&rft.epage=1052&rft.pages=1047-1052&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/8.6.1047&rft_dat=%3Cproquest_cross%3E69766425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211176298&rft_id=info:pmid/10332036&rfr_iscdi=true