Structural basis of autoregulation of phenylalanine hydroxylase

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural Biology 1999-05, Vol.6 (5), p.442-448
Hauptverfasser: Kobe, Bostjan, Jennings, Ian G, House, Colin M, Michell, Belinda J, Goodwill, Kenneth E, Santarsiero, Bernard D, Stevens, Raymond C, Cotton, Richard G. H, Kemp, Bruce E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 5
container_start_page 442
container_title Nature Structural Biology
container_volume 6
creator Kobe, Bostjan
Jennings, Ian G
House, Colin M
Michell, Belinda J
Goodwill, Kenneth E
Santarsiero, Bernard D
Stevens, Raymond C
Cotton, Richard G. H
Kemp, Bruce E
description Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an α-β sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.
doi_str_mv 10.1038/8247
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69755480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69755480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-fa1afed3af73595d6a8acf2c5d7ff86fdb0e1735dc602e761149c0de87d13adf3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMotrZ-BakHva0mm2ySPYkU_0HBgwreltnNpF3ZZmuyAfvtTWn1NMy83zxmHiFTRm8Y5fpW50IdkXHOOcu4LD6PyZhRlWeaSz0iZyF8UcqEoOUpGaUFzrRiY3L3NvjYDNFDN6shtGHW2xnEofe4jB0Mbe92k80K3baDDlzrcLbaGt__pD7glJxY6AKeH-qEfDw-vM-fs8Xr08v8fpE1XIohs8DAouFgFS_KwkjQ0Ni8KYyyVktraoosSaaRNEclGRNlQw1qZRgHY_mEXO99N77_jhiGat2GBrt0EfYxVLJURSE0TeDFAYz1Gk218e0a_Lb6ezkBV3sgJMkt0VdfffQuHZ-YHaarXZSJu9xzDlI8-G_kQk2LsqyEyPkvTl9vlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69755480</pqid></control><display><type>article</type><title>Structural basis of autoregulation of phenylalanine hydroxylase</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kobe, Bostjan ; Jennings, Ian G ; House, Colin M ; Michell, Belinda J ; Goodwill, Kenneth E ; Santarsiero, Bernard D ; Stevens, Raymond C ; Cotton, Richard G. H ; Kemp, Bruce E</creator><creatorcontrib>Kobe, Bostjan ; Jennings, Ian G ; House, Colin M ; Michell, Belinda J ; Goodwill, Kenneth E ; Santarsiero, Bernard D ; Stevens, Raymond C ; Cotton, Richard G. H ; Kemp, Bruce E</creatorcontrib><description>Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an α-β sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.</description><identifier>ISSN: 1072-8368</identifier><identifier>EISSN: 2331-365X</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/8247</identifier><identifier>PMID: 10331871</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Allosteric Regulation - drug effects ; Amino Acid Sequence ; Animals ; Binding Sites - genetics ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Catalytic Domain - genetics ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Humans ; letter ; Life Sciences ; Membrane Biology ; Mixed Function Oxygenases - chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Phenylalanine - metabolism ; Phenylalanine - pharmacology ; Phenylalanine Hydroxylase - chemistry ; Phenylalanine Hydroxylase - genetics ; Phenylalanine Hydroxylase - metabolism ; Phenylketonurias - enzymology ; Phenylketonurias - genetics ; Phosphorylation ; Protein Conformation ; Protein Structure ; Rats ; Sequence Homology, Amino Acid ; Space life sciences</subject><ispartof>Nature Structural Biology, 1999-05, Vol.6 (5), p.442-448</ispartof><rights>Nature America Inc. 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-fa1afed3af73595d6a8acf2c5d7ff86fdb0e1735dc602e761149c0de87d13adf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10331871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobe, Bostjan</creatorcontrib><creatorcontrib>Jennings, Ian G</creatorcontrib><creatorcontrib>House, Colin M</creatorcontrib><creatorcontrib>Michell, Belinda J</creatorcontrib><creatorcontrib>Goodwill, Kenneth E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Cotton, Richard G. H</creatorcontrib><creatorcontrib>Kemp, Bruce E</creatorcontrib><title>Structural basis of autoregulation of phenylalanine hydroxylase</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an α-β sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.</description><subject>Allosteric Regulation - drug effects</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Catalytic Domain - genetics</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Phenylalanine - metabolism</subject><subject>Phenylalanine - pharmacology</subject><subject>Phenylalanine Hydroxylase - chemistry</subject><subject>Phenylalanine Hydroxylase - genetics</subject><subject>Phenylalanine Hydroxylase - metabolism</subject><subject>Phenylketonurias - enzymology</subject><subject>Phenylketonurias - genetics</subject><subject>Phosphorylation</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Rats</subject><subject>Sequence Homology, Amino Acid</subject><subject>Space life sciences</subject><issn>1072-8368</issn><issn>2331-365X</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9LAzEQxYMotrZ-BakHva0mm2ySPYkU_0HBgwreltnNpF3ZZmuyAfvtTWn1NMy83zxmHiFTRm8Y5fpW50IdkXHOOcu4LD6PyZhRlWeaSz0iZyF8UcqEoOUpGaUFzrRiY3L3NvjYDNFDN6shtGHW2xnEofe4jB0Mbe92k80K3baDDlzrcLbaGt__pD7glJxY6AKeH-qEfDw-vM-fs8Xr08v8fpE1XIohs8DAouFgFS_KwkjQ0Ni8KYyyVktraoosSaaRNEclGRNlQw1qZRgHY_mEXO99N77_jhiGat2GBrt0EfYxVLJURSE0TeDFAYz1Gk218e0a_Lb6ezkBV3sgJMkt0VdfffQuHZ-YHaarXZSJu9xzDlI8-G_kQk2LsqyEyPkvTl9vlQ</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Kobe, Bostjan</creator><creator>Jennings, Ian G</creator><creator>House, Colin M</creator><creator>Michell, Belinda J</creator><creator>Goodwill, Kenneth E</creator><creator>Santarsiero, Bernard D</creator><creator>Stevens, Raymond C</creator><creator>Cotton, Richard G. H</creator><creator>Kemp, Bruce E</creator><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19990501</creationdate><title>Structural basis of autoregulation of phenylalanine hydroxylase</title><author>Kobe, Bostjan ; Jennings, Ian G ; House, Colin M ; Michell, Belinda J ; Goodwill, Kenneth E ; Santarsiero, Bernard D ; Stevens, Raymond C ; Cotton, Richard G. H ; Kemp, Bruce E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-fa1afed3af73595d6a8acf2c5d7ff86fdb0e1735dc602e761149c0de87d13adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Catalytic Domain - genetics</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Phenylalanine - metabolism</topic><topic>Phenylalanine - pharmacology</topic><topic>Phenylalanine Hydroxylase - chemistry</topic><topic>Phenylalanine Hydroxylase - genetics</topic><topic>Phenylalanine Hydroxylase - metabolism</topic><topic>Phenylketonurias - enzymology</topic><topic>Phenylketonurias - genetics</topic><topic>Phosphorylation</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Rats</topic><topic>Sequence Homology, Amino Acid</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobe, Bostjan</creatorcontrib><creatorcontrib>Jennings, Ian G</creatorcontrib><creatorcontrib>House, Colin M</creatorcontrib><creatorcontrib>Michell, Belinda J</creatorcontrib><creatorcontrib>Goodwill, Kenneth E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Cotton, Richard G. H</creatorcontrib><creatorcontrib>Kemp, Bruce E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobe, Bostjan</au><au>Jennings, Ian G</au><au>House, Colin M</au><au>Michell, Belinda J</au><au>Goodwill, Kenneth E</au><au>Santarsiero, Bernard D</au><au>Stevens, Raymond C</au><au>Cotton, Richard G. H</au><au>Kemp, Bruce E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of autoregulation of phenylalanine hydroxylase</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>6</volume><issue>5</issue><spage>442</spage><epage>448</epage><pages>442-448</pages><issn>1072-8368</issn><eissn>2331-365X</eissn><eissn>1545-9985</eissn><abstract>Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an α-β sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>10331871</pmid><doi>10.1038/8247</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-8368
ispartof Nature Structural Biology, 1999-05, Vol.6 (5), p.442-448
issn 1072-8368
2331-365X
1545-9985
language eng
recordid cdi_proquest_miscellaneous_69755480
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Allosteric Regulation - drug effects
Amino Acid Sequence
Animals
Binding Sites - genetics
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Catalytic Domain - genetics
Crystallization
Crystallography, X-Ray
Dimerization
Evolution, Molecular
Humans
letter
Life Sciences
Membrane Biology
Mixed Function Oxygenases - chemistry
Models, Molecular
Molecular Sequence Data
Mutation
Peptide Fragments - chemistry
Peptide Fragments - genetics
Peptide Fragments - metabolism
Phenylalanine - metabolism
Phenylalanine - pharmacology
Phenylalanine Hydroxylase - chemistry
Phenylalanine Hydroxylase - genetics
Phenylalanine Hydroxylase - metabolism
Phenylketonurias - enzymology
Phenylketonurias - genetics
Phosphorylation
Protein Conformation
Protein Structure
Rats
Sequence Homology, Amino Acid
Space life sciences
title Structural basis of autoregulation of phenylalanine hydroxylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20autoregulation%20of%20phenylalanine%20hydroxylase&rft.jtitle=Nature%20Structural%20Biology&rft.au=Kobe,%20Bostjan&rft.date=1999-05-01&rft.volume=6&rft.issue=5&rft.spage=442&rft.epage=448&rft.pages=442-448&rft.issn=1072-8368&rft.eissn=2331-365X&rft_id=info:doi/10.1038/8247&rft_dat=%3Cproquest_pubme%3E69755480%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69755480&rft_id=info:pmid/10331871&rfr_iscdi=true