Kernel-based spectral color image segmentation

In this work, we propose a new algorithm for spectral color image segmentation based on the use of a kernel matrix. A cost function for spectral kernel clustering is introduced to measure the correlation between clusters. An efficient multiscale method is presented for accelerating spectral color im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2008-11, Vol.25 (11), p.2805-2816
Hauptverfasser: HONGYU LI, BOCHKO, Vladimir, JAASKELAINEN, Timo, PARKKINEN, Jussi, SHEN, I-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2816
container_issue 11
container_start_page 2805
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 25
creator HONGYU LI
BOCHKO, Vladimir
JAASKELAINEN, Timo
PARKKINEN, Jussi
SHEN, I-Fan
description In this work, we propose a new algorithm for spectral color image segmentation based on the use of a kernel matrix. A cost function for spectral kernel clustering is introduced to measure the correlation between clusters. An efficient multiscale method is presented for accelerating spectral color image segmentation. The multiscale strategy uses the lattice geometry of images to construct an image pyramid whose hierarchy provides a framework for rapidly estimating eigenvectors of normalized kernel matrices. To prevent the boundaries from deteriorating, the image size on the top level of the pyramid is generally required to be around 75 x 75, where the eigenvectors of normalized kernel matrices would be approximately solved by the Nyström method. Within this hierarchical structure, the coarse solution is increasingly propagated to finer levels and is refined using subspace iteration. In addition, to make full use of the abundant color information contained in spectral color images, we propose using spectrum extension to incorporate the geometric features of spectra into similarity measures. Experimental results have shown that the proposed method can perform significantly well in spectral color image segmentation as well as speed up the approximation of the eigenvectors of normalized kernel matrices.
doi_str_mv 10.1364/JOSAA.25.002805
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69738795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69738795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2cea47289d2f058ccfddb5c46e524f62e34ae05bd1dddc0394266b44377783b73</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhS0EolCY2VAW2JLe-J2xqnhX6gDMlmPfVEF5FDsd-PcEGsF07vDdo6OPkKscspxJvnjevC6XGRUZANUgjshZLiikWjB6PN6geaoELWbkPMYPAOBSq1Myy3WhtJZwRrIXDB02aWkj-iTu0A3BNonrmz4kdWu3mETcttgNdqj77oKcVLaJeDnlnLzf372tHtP15uFptVynjlExpNSh5YrqwtMKhHau8r4UjksUlFeSIuMWQZQ-9947YAWnUpacM6WUZqVic3J76N2F_nOPcTBtHR02je2w30cjC8W0KsQILg6gC32MASuzC-Ps8GVyMD-KzK8iQ4U5KBo_rqfqfdmi_-cnJyNwMwE2OttUwXaujn8chSKnHIB9A6M3bbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69738795</pqid></control><display><type>article</type><title>Kernel-based spectral color image segmentation</title><source>Optica Publishing Group Journals</source><creator>HONGYU LI ; BOCHKO, Vladimir ; JAASKELAINEN, Timo ; PARKKINEN, Jussi ; SHEN, I-Fan</creator><creatorcontrib>HONGYU LI ; BOCHKO, Vladimir ; JAASKELAINEN, Timo ; PARKKINEN, Jussi ; SHEN, I-Fan</creatorcontrib><description>In this work, we propose a new algorithm for spectral color image segmentation based on the use of a kernel matrix. A cost function for spectral kernel clustering is introduced to measure the correlation between clusters. An efficient multiscale method is presented for accelerating spectral color image segmentation. The multiscale strategy uses the lattice geometry of images to construct an image pyramid whose hierarchy provides a framework for rapidly estimating eigenvectors of normalized kernel matrices. To prevent the boundaries from deteriorating, the image size on the top level of the pyramid is generally required to be around 75 x 75, where the eigenvectors of normalized kernel matrices would be approximately solved by the Nyström method. Within this hierarchical structure, the coarse solution is increasingly propagated to finer levels and is refined using subspace iteration. In addition, to make full use of the abundant color information contained in spectral color images, we propose using spectrum extension to incorporate the geometric features of spectra into similarity measures. Experimental results have shown that the proposed method can perform significantly well in spectral color image segmentation as well as speed up the approximation of the eigenvectors of normalized kernel matrices.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.25.002805</identifier><identifier>PMID: 18978860</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Computers in experimental physics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image forming and processing ; Image processing ; Imaging and optical processing ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Optics ; Physics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-11, Vol.25 (11), p.2805-2816</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2cea47289d2f058ccfddb5c46e524f62e34ae05bd1dddc0394266b44377783b73</citedby><cites>FETCH-LOGICAL-c325t-2cea47289d2f058ccfddb5c46e524f62e34ae05bd1dddc0394266b44377783b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3249,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20912400$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18978860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HONGYU LI</creatorcontrib><creatorcontrib>BOCHKO, Vladimir</creatorcontrib><creatorcontrib>JAASKELAINEN, Timo</creatorcontrib><creatorcontrib>PARKKINEN, Jussi</creatorcontrib><creatorcontrib>SHEN, I-Fan</creatorcontrib><title>Kernel-based spectral color image segmentation</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>In this work, we propose a new algorithm for spectral color image segmentation based on the use of a kernel matrix. A cost function for spectral kernel clustering is introduced to measure the correlation between clusters. An efficient multiscale method is presented for accelerating spectral color image segmentation. The multiscale strategy uses the lattice geometry of images to construct an image pyramid whose hierarchy provides a framework for rapidly estimating eigenvectors of normalized kernel matrices. To prevent the boundaries from deteriorating, the image size on the top level of the pyramid is generally required to be around 75 x 75, where the eigenvectors of normalized kernel matrices would be approximately solved by the Nyström method. Within this hierarchical structure, the coarse solution is increasingly propagated to finer levels and is refined using subspace iteration. In addition, to make full use of the abundant color information contained in spectral color images, we propose using spectrum extension to incorporate the geometric features of spectra into similarity measures. Experimental results have shown that the proposed method can perform significantly well in spectral color image segmentation as well as speed up the approximation of the eigenvectors of normalized kernel matrices.</description><subject>Computers in experimental physics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image forming and processing</subject><subject>Image processing</subject><subject>Imaging and optical processing</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Optics</subject><subject>Physics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAUhS0EolCY2VAW2JLe-J2xqnhX6gDMlmPfVEF5FDsd-PcEGsF07vDdo6OPkKscspxJvnjevC6XGRUZANUgjshZLiikWjB6PN6geaoELWbkPMYPAOBSq1Myy3WhtJZwRrIXDB02aWkj-iTu0A3BNonrmz4kdWu3mETcttgNdqj77oKcVLaJeDnlnLzf372tHtP15uFptVynjlExpNSh5YrqwtMKhHau8r4UjksUlFeSIuMWQZQ-9947YAWnUpacM6WUZqVic3J76N2F_nOPcTBtHR02je2w30cjC8W0KsQILg6gC32MASuzC-Ps8GVyMD-KzK8iQ4U5KBo_rqfqfdmi_-cnJyNwMwE2OttUwXaujn8chSKnHIB9A6M3bbw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>HONGYU LI</creator><creator>BOCHKO, Vladimir</creator><creator>JAASKELAINEN, Timo</creator><creator>PARKKINEN, Jussi</creator><creator>SHEN, I-Fan</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Kernel-based spectral color image segmentation</title><author>HONGYU LI ; BOCHKO, Vladimir ; JAASKELAINEN, Timo ; PARKKINEN, Jussi ; SHEN, I-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2cea47289d2f058ccfddb5c46e524f62e34ae05bd1dddc0394266b44377783b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computers in experimental physics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image forming and processing</topic><topic>Image processing</topic><topic>Imaging and optical processing</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HONGYU LI</creatorcontrib><creatorcontrib>BOCHKO, Vladimir</creatorcontrib><creatorcontrib>JAASKELAINEN, Timo</creatorcontrib><creatorcontrib>PARKKINEN, Jussi</creatorcontrib><creatorcontrib>SHEN, I-Fan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HONGYU LI</au><au>BOCHKO, Vladimir</au><au>JAASKELAINEN, Timo</au><au>PARKKINEN, Jussi</au><au>SHEN, I-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-based spectral color image segmentation</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>25</volume><issue>11</issue><spage>2805</spage><epage>2816</epage><pages>2805-2816</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>In this work, we propose a new algorithm for spectral color image segmentation based on the use of a kernel matrix. A cost function for spectral kernel clustering is introduced to measure the correlation between clusters. An efficient multiscale method is presented for accelerating spectral color image segmentation. The multiscale strategy uses the lattice geometry of images to construct an image pyramid whose hierarchy provides a framework for rapidly estimating eigenvectors of normalized kernel matrices. To prevent the boundaries from deteriorating, the image size on the top level of the pyramid is generally required to be around 75 x 75, where the eigenvectors of normalized kernel matrices would be approximately solved by the Nyström method. Within this hierarchical structure, the coarse solution is increasingly propagated to finer levels and is refined using subspace iteration. In addition, to make full use of the abundant color information contained in spectral color images, we propose using spectrum extension to incorporate the geometric features of spectra into similarity measures. Experimental results have shown that the proposed method can perform significantly well in spectral color image segmentation as well as speed up the approximation of the eigenvectors of normalized kernel matrices.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>18978860</pmid><doi>10.1364/JOSAA.25.002805</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2008-11, Vol.25 (11), p.2805-2816
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_69738795
source Optica Publishing Group Journals
subjects Computers in experimental physics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Image forming and processing
Image processing
Imaging and optical processing
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Optics
Physics
title Kernel-based spectral color image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-based%20spectral%20color%20image%20segmentation&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=HONGYU%20LI&rft.date=2008-11-01&rft.volume=25&rft.issue=11&rft.spage=2805&rft.epage=2816&rft.pages=2805-2816&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.25.002805&rft_dat=%3Cproquest_cross%3E69738795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69738795&rft_id=info:pmid/18978860&rfr_iscdi=true