Activation detection in functional MRI using subspace modeling and maximum likelihood estimation
A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 1999-02, Vol.18 (2), p.101-114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 2 |
container_start_page | 101 |
container_title | IEEE transactions on medical imaging |
container_volume | 18 |
creator | Ardekani, B.A. Kershaw, J. Kashikura, K. Kanno, I. |
description | A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented. |
doi_str_mv | 10.1109/42.759109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_69734909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759109</ieee_id><sourcerecordid>69734909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</originalsourceid><addsrcrecordid>eNqFkc1LJDEQxYMoOn4cvHqQHMTFQ2sl6XQ6x0HcXUERRMFbm0lX1uz2x9jpFv3vzUwPric9hBSvfryC9wjZZ3DKGOizlJ8qqeO0RiZMyjzhMn1YJxPgKk8AMr5FtkP4C8BSCXqTbDHggmeZmpDHqe39i-l929ASe7TLyTfUDc1yNhW9vr2kQ_DNHxqGWZgbi7RuS6wWimlKWptXXw81rfy_KD61bUkx9L5euu6SDWeqgHurf4fc_7y4O_-dXN38ujyfXiU25aJPyhkKQJ47h2iVlZyZElzULHMu5yYFJozKtQCFOkWlmIT4MAq6BMHFDvkx-s679nmI94vaB4tVZRpsh1DEeDLJOMsiefwlmWklUg36W5DnTMtcfu_ImVCL5CN4MoK2a0Po0BXzLubUvRUMikWVRcqLscrIHq5Mh1mN5Sdy7C4CRyvABGsq15nG-vCfU1kGGiJ2MGIeET-2qyPvsH-tgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21374509</pqid></control><display><type>article</type><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</creator><creatorcontrib>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</creatorcontrib><description>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.759109</identifier><identifier>PMID: 10232667</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adult ; Biological and medical sciences ; Brain ; Brain - anatomy & histology ; Brain - physiology ; Female ; Fourier Analysis ; Fourier series ; Frequency ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Likelihood Functions ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Maximum likelihood detection ; Maximum likelihood estimation ; Medical sciences ; Middle Aged ; Motor Activity ; Nervous system ; Noise measurement ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Testing ; Time measurement ; White noise</subject><ispartof>IEEE transactions on medical imaging, 1999-02, Vol.18 (2), p.101-114</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</citedby><cites>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1766090$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10232667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ardekani, B.A.</creatorcontrib><creatorcontrib>Kershaw, J.</creatorcontrib><creatorcontrib>Kashikura, K.</creatorcontrib><creatorcontrib>Kanno, I.</creatorcontrib><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiology</subject><subject>Female</subject><subject>Fourier Analysis</subject><subject>Fourier series</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Likelihood Functions</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Motor Activity</subject><subject>Nervous system</subject><subject>Noise measurement</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Testing</subject><subject>Time measurement</subject><subject>White noise</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1LJDEQxYMoOn4cvHqQHMTFQ2sl6XQ6x0HcXUERRMFbm0lX1uz2x9jpFv3vzUwPric9hBSvfryC9wjZZ3DKGOizlJ8qqeO0RiZMyjzhMn1YJxPgKk8AMr5FtkP4C8BSCXqTbDHggmeZmpDHqe39i-l929ASe7TLyTfUDc1yNhW9vr2kQ_DNHxqGWZgbi7RuS6wWimlKWptXXw81rfy_KD61bUkx9L5euu6SDWeqgHurf4fc_7y4O_-dXN38ujyfXiU25aJPyhkKQJ47h2iVlZyZElzULHMu5yYFJozKtQCFOkWlmIT4MAq6BMHFDvkx-s679nmI94vaB4tVZRpsh1DEeDLJOMsiefwlmWklUg36W5DnTMtcfu_ImVCL5CN4MoK2a0Po0BXzLubUvRUMikWVRcqLscrIHq5Mh1mN5Sdy7C4CRyvABGsq15nG-vCfU1kGGiJ2MGIeET-2qyPvsH-tgQ</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Ardekani, B.A.</creator><creator>Kershaw, J.</creator><creator>Kashikura, K.</creator><creator>Kanno, I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19990201</creationdate><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><author>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiology</topic><topic>Female</topic><topic>Fourier Analysis</topic><topic>Fourier series</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Likelihood Functions</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Motor Activity</topic><topic>Nervous system</topic><topic>Noise measurement</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Testing</topic><topic>Time measurement</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Ardekani, B.A.</creatorcontrib><creatorcontrib>Kershaw, J.</creatorcontrib><creatorcontrib>Kashikura, K.</creatorcontrib><creatorcontrib>Kanno, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ardekani, B.A.</au><au>Kershaw, J.</au><au>Kashikura, K.</au><au>Kanno, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>18</volume><issue>2</issue><spage>101</spage><epage>114</epage><pages>101-114</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>10232667</pmid><doi>10.1109/42.759109</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 1999-02, Vol.18 (2), p.101-114 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_69734909 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Biological and medical sciences Brain Brain - anatomy & histology Brain - physiology Female Fourier Analysis Fourier series Frequency Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Likelihood Functions Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Maximum likelihood detection Maximum likelihood estimation Medical sciences Middle Aged Motor Activity Nervous system Noise measurement Radiodiagnosis. Nmr imagery. Nmr spectrometry Sensitivity and Specificity Statistical analysis Statistical tests Testing Time measurement White noise |
title | Activation detection in functional MRI using subspace modeling and maximum likelihood estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20detection%20in%20functional%20MRI%20using%20subspace%20modeling%20and%20maximum%20likelihood%20estimation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ardekani,%20B.A.&rft.date=1999-02-01&rft.volume=18&rft.issue=2&rft.spage=101&rft.epage=114&rft.pages=101-114&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.759109&rft_dat=%3Cproquest_RIE%3E69734909%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21374509&rft_id=info:pmid/10232667&rft_ieee_id=759109&rfr_iscdi=true |