Activation detection in functional MRI using subspace modeling and maximum likelihood estimation

A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1999-02, Vol.18 (2), p.101-114
Hauptverfasser: Ardekani, B.A., Kershaw, J., Kashikura, K., Kanno, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 101
container_title IEEE transactions on medical imaging
container_volume 18
creator Ardekani, B.A.
Kershaw, J.
Kashikura, K.
Kanno, I.
description A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.
doi_str_mv 10.1109/42.759109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_69734909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759109</ieee_id><sourcerecordid>69734909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</originalsourceid><addsrcrecordid>eNqFkc1LJDEQxYMoOn4cvHqQHMTFQ2sl6XQ6x0HcXUERRMFbm0lX1uz2x9jpFv3vzUwPric9hBSvfryC9wjZZ3DKGOizlJ8qqeO0RiZMyjzhMn1YJxPgKk8AMr5FtkP4C8BSCXqTbDHggmeZmpDHqe39i-l929ASe7TLyTfUDc1yNhW9vr2kQ_DNHxqGWZgbi7RuS6wWimlKWptXXw81rfy_KD61bUkx9L5euu6SDWeqgHurf4fc_7y4O_-dXN38ujyfXiU25aJPyhkKQJ47h2iVlZyZElzULHMu5yYFJozKtQCFOkWlmIT4MAq6BMHFDvkx-s679nmI94vaB4tVZRpsh1DEeDLJOMsiefwlmWklUg36W5DnTMtcfu_ImVCL5CN4MoK2a0Po0BXzLubUvRUMikWVRcqLscrIHq5Mh1mN5Sdy7C4CRyvABGsq15nG-vCfU1kGGiJ2MGIeET-2qyPvsH-tgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21374509</pqid></control><display><type>article</type><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</creator><creatorcontrib>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</creatorcontrib><description>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.759109</identifier><identifier>PMID: 10232667</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adult ; Biological and medical sciences ; Brain ; Brain - anatomy &amp; histology ; Brain - physiology ; Female ; Fourier Analysis ; Fourier series ; Frequency ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Likelihood Functions ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Maximum likelihood detection ; Maximum likelihood estimation ; Medical sciences ; Middle Aged ; Motor Activity ; Nervous system ; Noise measurement ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Testing ; Time measurement ; White noise</subject><ispartof>IEEE transactions on medical imaging, 1999-02, Vol.18 (2), p.101-114</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</citedby><cites>FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1766090$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10232667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ardekani, B.A.</creatorcontrib><creatorcontrib>Kershaw, J.</creatorcontrib><creatorcontrib>Kashikura, K.</creatorcontrib><creatorcontrib>Kanno, I.</creatorcontrib><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Female</subject><subject>Fourier Analysis</subject><subject>Fourier series</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Likelihood Functions</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Motor Activity</subject><subject>Nervous system</subject><subject>Noise measurement</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Testing</subject><subject>Time measurement</subject><subject>White noise</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1LJDEQxYMoOn4cvHqQHMTFQ2sl6XQ6x0HcXUERRMFbm0lX1uz2x9jpFv3vzUwPric9hBSvfryC9wjZZ3DKGOizlJ8qqeO0RiZMyjzhMn1YJxPgKk8AMr5FtkP4C8BSCXqTbDHggmeZmpDHqe39i-l929ASe7TLyTfUDc1yNhW9vr2kQ_DNHxqGWZgbi7RuS6wWimlKWptXXw81rfy_KD61bUkx9L5euu6SDWeqgHurf4fc_7y4O_-dXN38ujyfXiU25aJPyhkKQJ47h2iVlZyZElzULHMu5yYFJozKtQCFOkWlmIT4MAq6BMHFDvkx-s679nmI94vaB4tVZRpsh1DEeDLJOMsiefwlmWklUg36W5DnTMtcfu_ImVCL5CN4MoK2a0Po0BXzLubUvRUMikWVRcqLscrIHq5Mh1mN5Sdy7C4CRyvABGsq15nG-vCfU1kGGiJ2MGIeET-2qyPvsH-tgQ</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Ardekani, B.A.</creator><creator>Kershaw, J.</creator><creator>Kashikura, K.</creator><creator>Kanno, I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19990201</creationdate><title>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</title><author>Ardekani, B.A. ; Kershaw, J. ; Kashikura, K. ; Kanno, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-dbe30e28ffeec7c521ad0fe30c1ff82a4013a789307e94e77150715e9309d0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Female</topic><topic>Fourier Analysis</topic><topic>Fourier series</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Likelihood Functions</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Motor Activity</topic><topic>Nervous system</topic><topic>Noise measurement</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Testing</topic><topic>Time measurement</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Ardekani, B.A.</creatorcontrib><creatorcontrib>Kershaw, J.</creatorcontrib><creatorcontrib>Kashikura, K.</creatorcontrib><creatorcontrib>Kanno, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ardekani, B.A.</au><au>Kershaw, J.</au><au>Kashikura, K.</au><au>Kanno, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation detection in functional MRI using subspace modeling and maximum likelihood estimation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>18</volume><issue>2</issue><spage>101</spage><epage>114</epage><pages>101-114</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A statistical method for detecting activated pixels in functional MRI (fMRI) data is presented. In this method, the fMRI time series measured at each pixel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. For periodic activation-baseline patterns, the response signal is modeled by a truncated Fourier series with a known fundamental frequency but unknown Fourier coefficients. The nuisance subspace is assumed to be unknown. A maximum likelihood estimate is derived for the component of the nuisance subspace which is orthogonal to the response signal subspace. An estimate for the order of the nuisance subspace is obtained from an information theoretic criterion. A statistical test is derived and shown to be the uniformly most powerful (UMP) test invariant to a group of transformations which are natural to the hypothesis testing problem. The maximal invariant statistic used in this test has an F distribution. The theoretical F distribution under the null hypothesis strongly concurred with the experimental frequency distribution obtained by performing null experiments in which the subjects did not perform any activation task. Applications of the theory to motor activation and visual stimulation fMRI studies are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>10232667</pmid><doi>10.1109/42.759109</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1999-02, Vol.18 (2), p.101-114
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_69734909
source IEEE Electronic Library (IEL)
subjects Adult
Biological and medical sciences
Brain
Brain - anatomy & histology
Brain - physiology
Female
Fourier Analysis
Fourier series
Frequency
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Likelihood Functions
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Maximum likelihood detection
Maximum likelihood estimation
Medical sciences
Middle Aged
Motor Activity
Nervous system
Noise measurement
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Sensitivity and Specificity
Statistical analysis
Statistical tests
Testing
Time measurement
White noise
title Activation detection in functional MRI using subspace modeling and maximum likelihood estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20detection%20in%20functional%20MRI%20using%20subspace%20modeling%20and%20maximum%20likelihood%20estimation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ardekani,%20B.A.&rft.date=1999-02-01&rft.volume=18&rft.issue=2&rft.spage=101&rft.epage=114&rft.pages=101-114&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.759109&rft_dat=%3Cproquest_RIE%3E69734909%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21374509&rft_id=info:pmid/10232667&rft_ieee_id=759109&rfr_iscdi=true