Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump

For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2008-10, Vol.32 (10), p.778-784
Hauptverfasser: Triep, Michael, Brücker, Christoph, Kerkhoffs, Wolfgang, Schumacher, Oliver, Marseille, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 10
container_start_page 778
container_title Artificial organs
container_volume 32
creator Triep, Michael
Brücker, Christoph
Kerkhoffs, Wolfgang
Schumacher, Oliver
Marseille, Oliver
description For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.
doi_str_mv 10.1111/j.1525-1594.2008.00630.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69731548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19413310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EokvhLyCfuCWME3_EEpfdtpRKLUUVqNyswZm0XrLJNk7K7r_Hy67KEXyxJb_PO6OHMS4gF-m8X-ZCFSoTysq8AKhyAF1CvnnGZk8fz9kMhIZMafn9iL2KcQkARoJ-yY5EZZXVWs_Y1UX3SHEMdziGvuN9w8d74rcY7_tp5GdNQ37koePIr_CuozF4bNstPx3CI3V8vgnY8kXb9zX_Mq3Wr9mLBttIbw73Mfv28ezryafs8vr84mR-mXlZKcgs2aqpTVMoWaEgUpUlBNQ-rYUSlSiQjC29rsEUBrTxvilrLUkqiUJgecze7XvXQ_8wpf3dKkRPbYsd9VN02ppSpPJ_BoWVoiwFpGC1D_qhj3Ggxq2HsMJh6wS4nXO3dDu1bqfW7Zy7P87dJqFvDzOmHyuq_4IHySnwYR_4FVra_nexm1_fpEfCsz0e4kibJxyHn06b0ih3-_ncSa2VPV0s3E35GzLDnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413310</pqid></control><display><type>article</type><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</creator><creatorcontrib>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</creatorcontrib><description>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/j.1525-1594.2008.00630.x</identifier><identifier>PMID: 18959666</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Axial blood pump ; Computational fluid dynamics ; Computer Simulation ; Digital particle image velocimetry ; Equipment Design ; Heart-Assist Devices ; Humans ; Magnet drive ; Magnetics - instrumentation ; Models, Cardiovascular ; Particle Size ; Pressure ; Rheology ; Sealless ; Thrombosis - prevention &amp; control ; Washout flow</subject><ispartof>Artificial organs, 2008-10, Vol.32 (10), p.778-784</ispartof><rights>2008, Copyright the Authors. Journal compilation © 2008, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</citedby><cites>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1525-1594.2008.00630.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1525-1594.2008.00630.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18959666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Triep, Michael</creatorcontrib><creatorcontrib>Brücker, Christoph</creatorcontrib><creatorcontrib>Kerkhoffs, Wolfgang</creatorcontrib><creatorcontrib>Schumacher, Oliver</creatorcontrib><creatorcontrib>Marseille, Oliver</creatorcontrib><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</description><subject>Axial blood pump</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Digital particle image velocimetry</subject><subject>Equipment Design</subject><subject>Heart-Assist Devices</subject><subject>Humans</subject><subject>Magnet drive</subject><subject>Magnetics - instrumentation</subject><subject>Models, Cardiovascular</subject><subject>Particle Size</subject><subject>Pressure</subject><subject>Rheology</subject><subject>Sealless</subject><subject>Thrombosis - prevention &amp; control</subject><subject>Washout flow</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EokvhLyCfuCWME3_EEpfdtpRKLUUVqNyswZm0XrLJNk7K7r_Hy67KEXyxJb_PO6OHMS4gF-m8X-ZCFSoTysq8AKhyAF1CvnnGZk8fz9kMhIZMafn9iL2KcQkARoJ-yY5EZZXVWs_Y1UX3SHEMdziGvuN9w8d74rcY7_tp5GdNQ37koePIr_CuozF4bNstPx3CI3V8vgnY8kXb9zX_Mq3Wr9mLBttIbw73Mfv28ezryafs8vr84mR-mXlZKcgs2aqpTVMoWaEgUpUlBNQ-rYUSlSiQjC29rsEUBrTxvilrLUkqiUJgecze7XvXQ_8wpf3dKkRPbYsd9VN02ppSpPJ_BoWVoiwFpGC1D_qhj3Ggxq2HsMJh6wS4nXO3dDu1bqfW7Zy7P87dJqFvDzOmHyuq_4IHySnwYR_4FVra_nexm1_fpEfCsz0e4kibJxyHn06b0ih3-_ncSa2VPV0s3E35GzLDnWg</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Triep, Michael</creator><creator>Brücker, Christoph</creator><creator>Kerkhoffs, Wolfgang</creator><creator>Schumacher, Oliver</creator><creator>Marseille, Oliver</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200810</creationdate><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><author>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Axial blood pump</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Digital particle image velocimetry</topic><topic>Equipment Design</topic><topic>Heart-Assist Devices</topic><topic>Humans</topic><topic>Magnet drive</topic><topic>Magnetics - instrumentation</topic><topic>Models, Cardiovascular</topic><topic>Particle Size</topic><topic>Pressure</topic><topic>Rheology</topic><topic>Sealless</topic><topic>Thrombosis - prevention &amp; control</topic><topic>Washout flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triep, Michael</creatorcontrib><creatorcontrib>Brücker, Christoph</creatorcontrib><creatorcontrib>Kerkhoffs, Wolfgang</creatorcontrib><creatorcontrib>Schumacher, Oliver</creatorcontrib><creatorcontrib>Marseille, Oliver</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triep, Michael</au><au>Brücker, Christoph</au><au>Kerkhoffs, Wolfgang</au><au>Schumacher, Oliver</au><au>Marseille, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2008-10</date><risdate>2008</risdate><volume>32</volume><issue>10</issue><spage>778</spage><epage>784</epage><pages>778-784</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18959666</pmid><doi>10.1111/j.1525-1594.2008.00630.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2008-10, Vol.32 (10), p.778-784
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_69731548
source MEDLINE; Wiley Online Library All Journals
subjects Axial blood pump
Computational fluid dynamics
Computer Simulation
Digital particle image velocimetry
Equipment Design
Heart-Assist Devices
Humans
Magnet drive
Magnetics - instrumentation
Models, Cardiovascular
Particle Size
Pressure
Rheology
Sealless
Thrombosis - prevention & control
Washout flow
title Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Washout%20Effect%20in%20a%20Magnetically%20Driven%20Axial%20Blood%20Pump&rft.jtitle=Artificial%20organs&rft.au=Triep,%20Michael&rft.date=2008-10&rft.volume=32&rft.issue=10&rft.spage=778&rft.epage=784&rft.pages=778-784&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/j.1525-1594.2008.00630.x&rft_dat=%3Cproquest_cross%3E19413310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413310&rft_id=info:pmid/18959666&rfr_iscdi=true