Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump
For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the...
Gespeichert in:
Veröffentlicht in: | Artificial organs 2008-10, Vol.32 (10), p.778-784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 10 |
container_start_page | 778 |
container_title | Artificial organs |
container_volume | 32 |
creator | Triep, Michael Brücker, Christoph Kerkhoffs, Wolfgang Schumacher, Oliver Marseille, Oliver |
description | For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis. |
doi_str_mv | 10.1111/j.1525-1594.2008.00630.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69731548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19413310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EokvhLyCfuCWME3_EEpfdtpRKLUUVqNyswZm0XrLJNk7K7r_Hy67KEXyxJb_PO6OHMS4gF-m8X-ZCFSoTysq8AKhyAF1CvnnGZk8fz9kMhIZMafn9iL2KcQkARoJ-yY5EZZXVWs_Y1UX3SHEMdziGvuN9w8d74rcY7_tp5GdNQ37koePIr_CuozF4bNstPx3CI3V8vgnY8kXb9zX_Mq3Wr9mLBttIbw73Mfv28ezryafs8vr84mR-mXlZKcgs2aqpTVMoWaEgUpUlBNQ-rYUSlSiQjC29rsEUBrTxvilrLUkqiUJgecze7XvXQ_8wpf3dKkRPbYsd9VN02ppSpPJ_BoWVoiwFpGC1D_qhj3Ggxq2HsMJh6wS4nXO3dDu1bqfW7Zy7P87dJqFvDzOmHyuq_4IHySnwYR_4FVra_nexm1_fpEfCsz0e4kibJxyHn06b0ih3-_ncSa2VPV0s3E35GzLDnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413310</pqid></control><display><type>article</type><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</creator><creatorcontrib>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</creatorcontrib><description>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/j.1525-1594.2008.00630.x</identifier><identifier>PMID: 18959666</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Axial blood pump ; Computational fluid dynamics ; Computer Simulation ; Digital particle image velocimetry ; Equipment Design ; Heart-Assist Devices ; Humans ; Magnet drive ; Magnetics - instrumentation ; Models, Cardiovascular ; Particle Size ; Pressure ; Rheology ; Sealless ; Thrombosis - prevention & control ; Washout flow</subject><ispartof>Artificial organs, 2008-10, Vol.32 (10), p.778-784</ispartof><rights>2008, Copyright the Authors. Journal compilation © 2008, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</citedby><cites>FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1525-1594.2008.00630.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1525-1594.2008.00630.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18959666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Triep, Michael</creatorcontrib><creatorcontrib>Brücker, Christoph</creatorcontrib><creatorcontrib>Kerkhoffs, Wolfgang</creatorcontrib><creatorcontrib>Schumacher, Oliver</creatorcontrib><creatorcontrib>Marseille, Oliver</creatorcontrib><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</description><subject>Axial blood pump</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Digital particle image velocimetry</subject><subject>Equipment Design</subject><subject>Heart-Assist Devices</subject><subject>Humans</subject><subject>Magnet drive</subject><subject>Magnetics - instrumentation</subject><subject>Models, Cardiovascular</subject><subject>Particle Size</subject><subject>Pressure</subject><subject>Rheology</subject><subject>Sealless</subject><subject>Thrombosis - prevention & control</subject><subject>Washout flow</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EokvhLyCfuCWME3_EEpfdtpRKLUUVqNyswZm0XrLJNk7K7r_Hy67KEXyxJb_PO6OHMS4gF-m8X-ZCFSoTysq8AKhyAF1CvnnGZk8fz9kMhIZMafn9iL2KcQkARoJ-yY5EZZXVWs_Y1UX3SHEMdziGvuN9w8d74rcY7_tp5GdNQ37koePIr_CuozF4bNstPx3CI3V8vgnY8kXb9zX_Mq3Wr9mLBttIbw73Mfv28ezryafs8vr84mR-mXlZKcgs2aqpTVMoWaEgUpUlBNQ-rYUSlSiQjC29rsEUBrTxvilrLUkqiUJgecze7XvXQ_8wpf3dKkRPbYsd9VN02ppSpPJ_BoWVoiwFpGC1D_qhj3Ggxq2HsMJh6wS4nXO3dDu1bqfW7Zy7P87dJqFvDzOmHyuq_4IHySnwYR_4FVra_nexm1_fpEfCsz0e4kibJxyHn06b0ih3-_ncSa2VPV0s3E35GzLDnWg</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Triep, Michael</creator><creator>Brücker, Christoph</creator><creator>Kerkhoffs, Wolfgang</creator><creator>Schumacher, Oliver</creator><creator>Marseille, Oliver</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200810</creationdate><title>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</title><author>Triep, Michael ; Brücker, Christoph ; Kerkhoffs, Wolfgang ; Schumacher, Oliver ; Marseille, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4850-9e98fd7f2548a1ee589ea0a6c895a4a512ae793c6d0727067ccf3d64e454a11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Axial blood pump</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Digital particle image velocimetry</topic><topic>Equipment Design</topic><topic>Heart-Assist Devices</topic><topic>Humans</topic><topic>Magnet drive</topic><topic>Magnetics - instrumentation</topic><topic>Models, Cardiovascular</topic><topic>Particle Size</topic><topic>Pressure</topic><topic>Rheology</topic><topic>Sealless</topic><topic>Thrombosis - prevention & control</topic><topic>Washout flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triep, Michael</creatorcontrib><creatorcontrib>Brücker, Christoph</creatorcontrib><creatorcontrib>Kerkhoffs, Wolfgang</creatorcontrib><creatorcontrib>Schumacher, Oliver</creatorcontrib><creatorcontrib>Marseille, Oliver</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triep, Michael</au><au>Brücker, Christoph</au><au>Kerkhoffs, Wolfgang</au><au>Schumacher, Oliver</au><au>Marseille, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2008-10</date><risdate>2008</risdate><volume>32</volume><issue>10</issue><spage>778</spage><epage>784</epage><pages>778-784</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>For a long‐term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot–axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18959666</pmid><doi>10.1111/j.1525-1594.2008.00630.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-564X |
ispartof | Artificial organs, 2008-10, Vol.32 (10), p.778-784 |
issn | 0160-564X 1525-1594 |
language | eng |
recordid | cdi_proquest_miscellaneous_69731548 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Axial blood pump Computational fluid dynamics Computer Simulation Digital particle image velocimetry Equipment Design Heart-Assist Devices Humans Magnet drive Magnetics - instrumentation Models, Cardiovascular Particle Size Pressure Rheology Sealless Thrombosis - prevention & control Washout flow |
title | Investigation of the Washout Effect in a Magnetically Driven Axial Blood Pump |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Washout%20Effect%20in%20a%20Magnetically%20Driven%20Axial%20Blood%20Pump&rft.jtitle=Artificial%20organs&rft.au=Triep,%20Michael&rft.date=2008-10&rft.volume=32&rft.issue=10&rft.spage=778&rft.epage=784&rft.pages=778-784&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/j.1525-1594.2008.00630.x&rft_dat=%3Cproquest_cross%3E19413310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413310&rft_id=info:pmid/18959666&rfr_iscdi=true |