Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances
Abstract Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategie...
Gespeichert in:
Veröffentlicht in: | Journal of electrocardiology 2008-11, Vol.41 (6), p.483-486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 6 |
container_start_page | 483 |
container_title | Journal of electrocardiology |
container_volume | 41 |
creator | Triedman, John K., MD Jolley, Matthew, MD Stinstra, Jeroen, PhD Brooks, Dana H., PhD MacLeod, Rob, PhD |
description | Abstract Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies are lacking, we have developed image-based finite element models to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this article, we review recently published studies by our group using such models and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in defibrillation thresholds with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation before clinical or industrial use. |
doi_str_mv | 10.1016/j.jelectrocard.2008.08.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69715246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022073608003063</els_id><sourcerecordid>69715246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-10e222689a05f58c6e952e11034269561d99ade84014e048a9021d35743c53e23</originalsourceid><addsrcrecordid>eNqNUl1rFTEQDaLY26t_QZY--LbXyWQ3m-2DIK1VoaCgPoc0mbVZ96Mm2Yv992a51w_6JAyEGU5mzpwzjJ1x2HHg8lW_62kgm8JsTXA7BFC7NQAfsQ2vBZaqEvCYbXIFS2iEPGGnMfYA0GKDT9kJV4o3LcoNGz8Fct4mv6dinB0NfvpWzF3hqPM3wQ-DSX6eiiWu9Vv6aW7JBTMUZnJFohR-552ffKIi8xppSodW8bwIZNfUuL2ZLMVn7ElnhkjPj--Wfb16--XifXn98d2HizfXpa05ppIDIaJUrYG6q5WV1NZInIOoULa15K5tjSNVAa8IKmVaQO5E3VTC1oJQbNnLQ9-7MP9YKCY9-mgpbzPRvEQt24bXWMkMPHsA7OclTJmbRi4RKpml3LLzA8iGOcZAnb4LfjThXnPQqyO61_86oldH9BqwUnlxnLDcjOT-fj1akAGXB0AWjPaego7WU1bL-axe0m72_zfn9YM2NnvprRm-0z3FP2txHVGD_rzexnoaoAAESCF-ARYQuB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216204684</pqid></control><display><type>article</type><title>Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Triedman, John K., MD ; Jolley, Matthew, MD ; Stinstra, Jeroen, PhD ; Brooks, Dana H., PhD ; MacLeod, Rob, PhD</creator><creatorcontrib>Triedman, John K., MD ; Jolley, Matthew, MD ; Stinstra, Jeroen, PhD ; Brooks, Dana H., PhD ; MacLeod, Rob, PhD</creatorcontrib><description>Abstract Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies are lacking, we have developed image-based finite element models to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this article, we review recently published studies by our group using such models and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in defibrillation thresholds with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation before clinical or industrial use.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2008.08.002</identifier><identifier>PMID: 18817926</identifier><identifier>CODEN: JECAB4</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atrial Fibrillation - physiopathology ; Atrial Fibrillation - therapy ; Cardiovascular ; Computer Simulation ; Defibrillation ; Electric Countershock - methods ; Finite Element Analysis ; Heart Conduction System - physiopathology ; Humans ; ICD ; Modeling ; Models, Cardiovascular ; Pediatric electrophysiology ; Therapy, Computer-Assisted - methods</subject><ispartof>Journal of electrocardiology, 2008-11, Vol.41 (6), p.483-486</ispartof><rights>Elsevier Inc.</rights><rights>2008 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov/Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-10e222689a05f58c6e952e11034269561d99ade84014e048a9021d35743c53e23</citedby><cites>FETCH-LOGICAL-c512t-10e222689a05f58c6e952e11034269561d99ade84014e048a9021d35743c53e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/216204684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18817926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Triedman, John K., MD</creatorcontrib><creatorcontrib>Jolley, Matthew, MD</creatorcontrib><creatorcontrib>Stinstra, Jeroen, PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>MacLeod, Rob, PhD</creatorcontrib><title>Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies are lacking, we have developed image-based finite element models to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this article, we review recently published studies by our group using such models and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in defibrillation thresholds with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation before clinical or industrial use.</description><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Fibrillation - therapy</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Defibrillation</subject><subject>Electric Countershock - methods</subject><subject>Finite Element Analysis</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>ICD</subject><subject>Modeling</subject><subject>Models, Cardiovascular</subject><subject>Pediatric electrophysiology</subject><subject>Therapy, Computer-Assisted - methods</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUl1rFTEQDaLY26t_QZY--LbXyWQ3m-2DIK1VoaCgPoc0mbVZ96Mm2Yv992a51w_6JAyEGU5mzpwzjJ1x2HHg8lW_62kgm8JsTXA7BFC7NQAfsQ2vBZaqEvCYbXIFS2iEPGGnMfYA0GKDT9kJV4o3LcoNGz8Fct4mv6dinB0NfvpWzF3hqPM3wQ-DSX6eiiWu9Vv6aW7JBTMUZnJFohR-552ffKIi8xppSodW8bwIZNfUuL2ZLMVn7ElnhkjPj--Wfb16--XifXn98d2HizfXpa05ppIDIaJUrYG6q5WV1NZInIOoULa15K5tjSNVAa8IKmVaQO5E3VTC1oJQbNnLQ9-7MP9YKCY9-mgpbzPRvEQt24bXWMkMPHsA7OclTJmbRi4RKpml3LLzA8iGOcZAnb4LfjThXnPQqyO61_86oldH9BqwUnlxnLDcjOT-fj1akAGXB0AWjPaego7WU1bL-axe0m72_zfn9YM2NnvprRm-0z3FP2txHVGD_rzexnoaoAAESCF-ARYQuB8</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Triedman, John K., MD</creator><creator>Jolley, Matthew, MD</creator><creator>Stinstra, Jeroen, PhD</creator><creator>Brooks, Dana H., PhD</creator><creator>MacLeod, Rob, PhD</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances</title><author>Triedman, John K., MD ; Jolley, Matthew, MD ; Stinstra, Jeroen, PhD ; Brooks, Dana H., PhD ; MacLeod, Rob, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-10e222689a05f58c6e952e11034269561d99ade84014e048a9021d35743c53e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Fibrillation - therapy</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Defibrillation</topic><topic>Electric Countershock - methods</topic><topic>Finite Element Analysis</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>ICD</topic><topic>Modeling</topic><topic>Models, Cardiovascular</topic><topic>Pediatric electrophysiology</topic><topic>Therapy, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triedman, John K., MD</creatorcontrib><creatorcontrib>Jolley, Matthew, MD</creatorcontrib><creatorcontrib>Stinstra, Jeroen, PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>MacLeod, Rob, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triedman, John K., MD</au><au>Jolley, Matthew, MD</au><au>Stinstra, Jeroen, PhD</au><au>Brooks, Dana H., PhD</au><au>MacLeod, Rob, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>41</volume><issue>6</issue><spage>483</spage><epage>486</epage><pages>483-486</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><coden>JECAB4</coden><abstract>Abstract Implanted cardioverter/defribillator (ICD) implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies are lacking, we have developed image-based finite element models to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this article, we review recently published studies by our group using such models and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in defibrillation thresholds with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation before clinical or industrial use.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18817926</pmid><doi>10.1016/j.jelectrocard.2008.08.002</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0736 |
ispartof | Journal of electrocardiology, 2008-11, Vol.41 (6), p.483-486 |
issn | 0022-0736 1532-8430 |
language | eng |
recordid | cdi_proquest_miscellaneous_69715246 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Atrial Fibrillation - physiopathology Atrial Fibrillation - therapy Cardiovascular Computer Simulation Defibrillation Electric Countershock - methods Finite Element Analysis Heart Conduction System - physiopathology Humans ICD Modeling Models, Cardiovascular Pediatric electrophysiology Therapy, Computer-Assisted - methods |
title | Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20of%20defibrillation%20using%20hexahedral%20and%20tetrahedral%20finite%20element%20models:%20recent%20advances&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Triedman,%20John%20K.,%20MD&rft.date=2008-11-01&rft.volume=41&rft.issue=6&rft.spage=483&rft.epage=486&rft.pages=483-486&rft.issn=0022-0736&rft.eissn=1532-8430&rft.coden=JECAB4&rft_id=info:doi/10.1016/j.jelectrocard.2008.08.002&rft_dat=%3Cproquest_cross%3E69715246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216204684&rft_id=info:pmid/18817926&rft_els_id=S0022073608003063&rfr_iscdi=true |