Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro
The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO 2 ), and titanium oxide (TiO 2...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2008-11, Vol.14 (11), p.1853-1859 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1859 |
---|---|
container_issue | 11 |
container_start_page | 1853 |
container_title | Tissue engineering. Part A |
container_volume | 14 |
creator | Huang, Zhinong Daniels, R. Hugh Enzerink, Robert-Jan Hardev, Veeral Sahi, Vijendra Goodman, Stuart B. |
description | The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO
2
), and titanium oxide (TiO
2
), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO
2
nanofiber-coated discs was better than on Ti alloy surfaces. TiO
2
nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture–treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells
in vitro
. |
doi_str_mv | 10.1089/ten.tea.2007.0399 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69713563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A196052219</galeid><sourcerecordid>A196052219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-427bc59e35899315d064e7a785c46c4f6cc2b9de9ce95dfb92eb95e35181f5023</originalsourceid><addsrcrecordid>eNqNkltrFTEUhYMoth79Ab5IUPBtxlwmk8ljOVYtFCt4wbeQyezUlDlJm2Qe_PdmmIOiCEoICYtvLfZmb4SeUtJSMqhXBUJbwLSMENkSrtQ9dEoVlw3n4uv9n_-OnqBHOd8Q0pNeyofohA5KECbZKfLnzoEtODr83oTo_Aip2UdTYMIfl-SMhYxjwOUb4A8pzt5BMsVXxYQJv_bVnSAUv2k15SoXiLcpXkPwJaaMLwL-4kuKj9EDZ-YMT47vDn1-c_5p_665vHp7sT-7bGwnWWk6JkcrFHAxKMWpmEjfgTRyELbrbed6a9moJlAWlJjcqBiMSlScDtTVpvgOvdxyaxF3C-SiDz5bmGcTIC5Z90pSLnr-T5AqQVk9FXz-B3gTlxRqE5oRKlnNW6EXG3RtZtA-uFiSsWuiPqOqJ4KxOo4dav9C1TPBwdsYwPmq_2agm8GmmHMCp2-TP5j0XVOi1yXQdQnqNXpdAr0uQfU8O9a7jAeYfjmOU6-A3IBVNiHMHurYy39E_wBydcAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201727131</pqid></control><display><type>article</type><title>Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Huang, Zhinong ; Daniels, R. Hugh ; Enzerink, Robert-Jan ; Hardev, Veeral ; Sahi, Vijendra ; Goodman, Stuart B.</creator><creatorcontrib>Huang, Zhinong ; Daniels, R. Hugh ; Enzerink, Robert-Jan ; Hardev, Veeral ; Sahi, Vijendra ; Goodman, Stuart B.</creatorcontrib><description>The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO
2
), and titanium oxide (TiO
2
), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO
2
nanofiber-coated discs was better than on Ti alloy surfaces. TiO
2
nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture–treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells
in vitro
.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2007.0399</identifier><identifier>PMID: 18950272</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Alkaline Phosphatase - metabolism ; Alloys - chemistry ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Bone cells ; Cell Differentiation - drug effects ; Cell Line ; Cell proliferation ; Cell Proliferation - drug effects ; Chemical properties ; Enzyme-Linked Immunosorbent Assay ; In vitro fertilization ; Mechanical properties ; Mice ; Nanomaterials ; Orthopedic implants ; Orthopedics ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin - metabolism ; Physiological aspects ; Silicon - chemistry ; Silicon - pharmacology ; Silicon Dioxide - chemistry ; Silicon Dioxide - pharmacology ; Tissue Engineering - methods ; Titanium ; Titanium - chemistry ; Titanium - pharmacology ; Titanium alloys</subject><ispartof>Tissue engineering. Part A, 2008-11, Vol.14 (11), p.1853-1859</ispartof><rights>2008, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2008 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2008, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-427bc59e35899315d064e7a785c46c4f6cc2b9de9ce95dfb92eb95e35181f5023</citedby><cites>FETCH-LOGICAL-c472t-427bc59e35899315d064e7a785c46c4f6cc2b9de9ce95dfb92eb95e35181f5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2007.0399$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2007.0399$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,777,781,3029,21704,27905,27906,55272,55284</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18950272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhinong</creatorcontrib><creatorcontrib>Daniels, R. Hugh</creatorcontrib><creatorcontrib>Enzerink, Robert-Jan</creatorcontrib><creatorcontrib>Hardev, Veeral</creatorcontrib><creatorcontrib>Sahi, Vijendra</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><title>Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO
2
), and titanium oxide (TiO
2
), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO
2
nanofiber-coated discs was better than on Ti alloy surfaces. TiO
2
nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture–treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells
in vitro
.</description><subject>Alkaline Phosphatase - metabolism</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bone cells</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemical properties</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>In vitro fertilization</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Orthopedic implants</subject><subject>Orthopedics</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - metabolism</subject><subject>Physiological aspects</subject><subject>Silicon - chemistry</subject><subject>Silicon - pharmacology</subject><subject>Silicon Dioxide - chemistry</subject><subject>Silicon Dioxide - pharmacology</subject><subject>Tissue Engineering - methods</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Titanium alloys</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkltrFTEUhYMoth79Ab5IUPBtxlwmk8ljOVYtFCt4wbeQyezUlDlJm2Qe_PdmmIOiCEoICYtvLfZmb4SeUtJSMqhXBUJbwLSMENkSrtQ9dEoVlw3n4uv9n_-OnqBHOd8Q0pNeyofohA5KECbZKfLnzoEtODr83oTo_Aip2UdTYMIfl-SMhYxjwOUb4A8pzt5BMsVXxYQJv_bVnSAUv2k15SoXiLcpXkPwJaaMLwL-4kuKj9EDZ-YMT47vDn1-c_5p_665vHp7sT-7bGwnWWk6JkcrFHAxKMWpmEjfgTRyELbrbed6a9moJlAWlJjcqBiMSlScDtTVpvgOvdxyaxF3C-SiDz5bmGcTIC5Z90pSLnr-T5AqQVk9FXz-B3gTlxRqE5oRKlnNW6EXG3RtZtA-uFiSsWuiPqOqJ4KxOo4dav9C1TPBwdsYwPmq_2agm8GmmHMCp2-TP5j0XVOi1yXQdQnqNXpdAr0uQfU8O9a7jAeYfjmOU6-A3IBVNiHMHurYy39E_wBydcAl</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Huang, Zhinong</creator><creator>Daniels, R. Hugh</creator><creator>Enzerink, Robert-Jan</creator><creator>Hardev, Veeral</creator><creator>Sahi, Vijendra</creator><creator>Goodman, Stuart B.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081101</creationdate><title>Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro</title><author>Huang, Zhinong ; Daniels, R. Hugh ; Enzerink, Robert-Jan ; Hardev, Veeral ; Sahi, Vijendra ; Goodman, Stuart B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-427bc59e35899315d064e7a785c46c4f6cc2b9de9ce95dfb92eb95e35181f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bone cells</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemical properties</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>In vitro fertilization</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Orthopedic implants</topic><topic>Orthopedics</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - metabolism</topic><topic>Physiological aspects</topic><topic>Silicon - chemistry</topic><topic>Silicon - pharmacology</topic><topic>Silicon Dioxide - chemistry</topic><topic>Silicon Dioxide - pharmacology</topic><topic>Tissue Engineering - methods</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhinong</creatorcontrib><creatorcontrib>Daniels, R. Hugh</creatorcontrib><creatorcontrib>Enzerink, Robert-Jan</creatorcontrib><creatorcontrib>Hardev, Veeral</creatorcontrib><creatorcontrib>Sahi, Vijendra</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhinong</au><au>Daniels, R. Hugh</au><au>Enzerink, Robert-Jan</au><au>Hardev, Veeral</au><au>Sahi, Vijendra</au><au>Goodman, Stuart B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>14</volume><issue>11</issue><spage>1853</spage><epage>1859</epage><pages>1853-1859</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO
2
), and titanium oxide (TiO
2
), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO
2
nanofiber-coated discs was better than on Ti alloy surfaces. TiO
2
nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture–treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells
in vitro
.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>18950272</pmid><doi>10.1089/ten.tea.2007.0399</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2008-11, Vol.14 (11), p.1853-1859 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_proquest_miscellaneous_69713563 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Alkaline Phosphatase - metabolism Alloys - chemistry Animals Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Bone cells Cell Differentiation - drug effects Cell Line Cell proliferation Cell Proliferation - drug effects Chemical properties Enzyme-Linked Immunosorbent Assay In vitro fertilization Mechanical properties Mice Nanomaterials Orthopedic implants Orthopedics Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin - metabolism Physiological aspects Silicon - chemistry Silicon - pharmacology Silicon Dioxide - chemistry Silicon Dioxide - pharmacology Tissue Engineering - methods Titanium Titanium - chemistry Titanium - pharmacology Titanium alloys |
title | Effect of Nanofiber-Coated Surfaces on the Proliferation and Differentiation of Osteoprogenitors In Vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nanofiber-Coated%20Surfaces%20on%20the%20Proliferation%20and%20Differentiation%20of%20Osteoprogenitors%20In%20Vitro&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Huang,%20Zhinong&rft.date=2008-11-01&rft.volume=14&rft.issue=11&rft.spage=1853&rft.epage=1859&rft.pages=1853-1859&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2007.0399&rft_dat=%3Cgale_proqu%3EA196052219%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201727131&rft_id=info:pmid/18950272&rft_galeid=A196052219&rfr_iscdi=true |