Statistical Discrimination of Liquid Gasoline Samples from Casework

:  The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forensic sciences 2008-09, Vol.53 (5), p.1092-1101
Hauptverfasser: Petraco, Nicholas D. K., Gil, Mark, Pizzola, Peter A., Kubic, T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 5
container_start_page 1092
container_title Journal of forensic sciences
container_volume 53
creator Petraco, Nicholas D. K.
Gil, Mark
Pizzola, Peter A.
Kubic, T. A.
description :  The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.
doi_str_mv 10.1111/j.1556-4029.2008.00824.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69689089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1549287591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</originalsourceid><addsrcrecordid>eNqNkV1LHDEUhoNYdLX9CzJ44d1M8z0JeCPTum1ZFNRi7w7ZbAayzkzWZAfXf2_WXSz0qoGQkDzv4eQJQgXBFcnj67IiQsiSY6orirGq8qS82hygycfFIZpgTGlJiFbH6CSlJcZYEkmO0DFRkjMlxQQ192uz9mntremKbz7Z6Hs_5KMwFKEtZv559ItialLo_OCKe9OvOpeKNoa-aExyLyE-fUafWtMl92W_nqLf198fmh_l7Hb6s7malZYzwsv5gjHDnKotUWSuueLUWqOYUAtsiNFYWKxrIupWWcl1rXCrtRQMM2JF7Rw7RRe7uqsYnkeX1tDnhl3XmcGFMYHUUmmsdAbP_wGXYYxD7g0o0VITymmG1A6yMaQUXQur_HYTX4Fg2FqGJWxlwlYmbC3Du2XY5OjZvv44793ib3CvNQOXO-DFd-71vwvDr-vbvMnxchfPH-M2H3ETn0DWrBbweDOFP-rusb57UNCwNx8NmDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219691242</pqid></control><display><type>article</type><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><source>Access via Wiley Online Library</source><creator>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</creator><creatorcontrib>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</creatorcontrib><description>:  The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/j.1556-4029.2008.00824.x</identifier><identifier>PMID: 18643865</identifier><identifier>CODEN: JFSCAS</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Chromatography ; classification ; Discriminant analysis ; Forensic chemistry ; forensic science ; Gases ; Gasoline ; Mass spectrometry ; multivariate ; pattern recognition</subject><ispartof>Journal of forensic sciences, 2008-09, Vol.53 (5), p.1092-1101</ispartof><rights>2008 American Academy of Forensic Sciences</rights><rights>Copyright American Society for Testing and Materials Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</citedby><cites>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1556-4029.2008.00824.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1556-4029.2008.00824.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18643865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petraco, Nicholas D. K.</creatorcontrib><creatorcontrib>Gil, Mark</creatorcontrib><creatorcontrib>Pizzola, Peter A.</creatorcontrib><creatorcontrib>Kubic, T. A.</creatorcontrib><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>:  The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</description><subject>Chromatography</subject><subject>classification</subject><subject>Discriminant analysis</subject><subject>Forensic chemistry</subject><subject>forensic science</subject><subject>Gases</subject><subject>Gasoline</subject><subject>Mass spectrometry</subject><subject>multivariate</subject><subject>pattern recognition</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LHDEUhoNYdLX9CzJ44d1M8z0JeCPTum1ZFNRi7w7ZbAayzkzWZAfXf2_WXSz0qoGQkDzv4eQJQgXBFcnj67IiQsiSY6orirGq8qS82hygycfFIZpgTGlJiFbH6CSlJcZYEkmO0DFRkjMlxQQ192uz9mntremKbz7Z6Hs_5KMwFKEtZv559ItialLo_OCKe9OvOpeKNoa-aExyLyE-fUafWtMl92W_nqLf198fmh_l7Hb6s7malZYzwsv5gjHDnKotUWSuueLUWqOYUAtsiNFYWKxrIupWWcl1rXCrtRQMM2JF7Rw7RRe7uqsYnkeX1tDnhl3XmcGFMYHUUmmsdAbP_wGXYYxD7g0o0VITymmG1A6yMaQUXQur_HYTX4Fg2FqGJWxlwlYmbC3Du2XY5OjZvv44793ib3CvNQOXO-DFd-71vwvDr-vbvMnxchfPH-M2H3ETn0DWrBbweDOFP-rusb57UNCwNx8NmDY</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Petraco, Nicholas D. K.</creator><creator>Gil, Mark</creator><creator>Pizzola, Peter A.</creator><creator>Kubic, T. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><author>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chromatography</topic><topic>classification</topic><topic>Discriminant analysis</topic><topic>Forensic chemistry</topic><topic>forensic science</topic><topic>Gases</topic><topic>Gasoline</topic><topic>Mass spectrometry</topic><topic>multivariate</topic><topic>pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petraco, Nicholas D. K.</creatorcontrib><creatorcontrib>Gil, Mark</creatorcontrib><creatorcontrib>Pizzola, Peter A.</creatorcontrib><creatorcontrib>Kubic, T. A.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petraco, Nicholas D. K.</au><au>Gil, Mark</au><au>Pizzola, Peter A.</au><au>Kubic, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Discrimination of Liquid Gasoline Samples from Casework</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2008-09</date><risdate>2008</risdate><volume>53</volume><issue>5</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><coden>JFSCAS</coden><abstract>:  The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18643865</pmid><doi>10.1111/j.1556-4029.2008.00824.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1198
ispartof Journal of forensic sciences, 2008-09, Vol.53 (5), p.1092-1101
issn 0022-1198
1556-4029
language eng
recordid cdi_proquest_miscellaneous_69689089
source Access via Wiley Online Library
subjects Chromatography
classification
Discriminant analysis
Forensic chemistry
forensic science
Gases
Gasoline
Mass spectrometry
multivariate
pattern recognition
title Statistical Discrimination of Liquid Gasoline Samples from Casework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Discrimination%20of%20Liquid%20Gasoline%20Samples%20from%20Casework&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Petraco,%20Nicholas%20D.%20K.&rft.date=2008-09&rft.volume=53&rft.issue=5&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=0022-1198&rft.eissn=1556-4029&rft.coden=JFSCAS&rft_id=info:doi/10.1111/j.1556-4029.2008.00824.x&rft_dat=%3Cproquest_cross%3E1549287591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219691242&rft_id=info:pmid/18643865&rfr_iscdi=true