Statistical Discrimination of Liquid Gasoline Samples from Casework
: The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal...
Gespeichert in:
Veröffentlicht in: | Journal of forensic sciences 2008-09, Vol.53 (5), p.1092-1101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 5 |
container_start_page | 1092 |
container_title | Journal of forensic sciences |
container_volume | 53 |
creator | Petraco, Nicholas D. K. Gil, Mark Pizzola, Peter A. Kubic, T. A. |
description | : The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework. |
doi_str_mv | 10.1111/j.1556-4029.2008.00824.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69689089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1549287591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</originalsourceid><addsrcrecordid>eNqNkV1LHDEUhoNYdLX9CzJ44d1M8z0JeCPTum1ZFNRi7w7ZbAayzkzWZAfXf2_WXSz0qoGQkDzv4eQJQgXBFcnj67IiQsiSY6orirGq8qS82hygycfFIZpgTGlJiFbH6CSlJcZYEkmO0DFRkjMlxQQ192uz9mntremKbz7Z6Hs_5KMwFKEtZv559ItialLo_OCKe9OvOpeKNoa-aExyLyE-fUafWtMl92W_nqLf198fmh_l7Hb6s7malZYzwsv5gjHDnKotUWSuueLUWqOYUAtsiNFYWKxrIupWWcl1rXCrtRQMM2JF7Rw7RRe7uqsYnkeX1tDnhl3XmcGFMYHUUmmsdAbP_wGXYYxD7g0o0VITymmG1A6yMaQUXQur_HYTX4Fg2FqGJWxlwlYmbC3Du2XY5OjZvv44793ib3CvNQOXO-DFd-71vwvDr-vbvMnxchfPH-M2H3ETn0DWrBbweDOFP-rusb57UNCwNx8NmDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219691242</pqid></control><display><type>article</type><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><source>Access via Wiley Online Library</source><creator>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</creator><creatorcontrib>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</creatorcontrib><description>: The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/j.1556-4029.2008.00824.x</identifier><identifier>PMID: 18643865</identifier><identifier>CODEN: JFSCAS</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Chromatography ; classification ; Discriminant analysis ; Forensic chemistry ; forensic science ; Gases ; Gasoline ; Mass spectrometry ; multivariate ; pattern recognition</subject><ispartof>Journal of forensic sciences, 2008-09, Vol.53 (5), p.1092-1101</ispartof><rights>2008 American Academy of Forensic Sciences</rights><rights>Copyright American Society for Testing and Materials Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</citedby><cites>FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1556-4029.2008.00824.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1556-4029.2008.00824.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18643865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petraco, Nicholas D. K.</creatorcontrib><creatorcontrib>Gil, Mark</creatorcontrib><creatorcontrib>Pizzola, Peter A.</creatorcontrib><creatorcontrib>Kubic, T. A.</creatorcontrib><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>: The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</description><subject>Chromatography</subject><subject>classification</subject><subject>Discriminant analysis</subject><subject>Forensic chemistry</subject><subject>forensic science</subject><subject>Gases</subject><subject>Gasoline</subject><subject>Mass spectrometry</subject><subject>multivariate</subject><subject>pattern recognition</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LHDEUhoNYdLX9CzJ44d1M8z0JeCPTum1ZFNRi7w7ZbAayzkzWZAfXf2_WXSz0qoGQkDzv4eQJQgXBFcnj67IiQsiSY6orirGq8qS82hygycfFIZpgTGlJiFbH6CSlJcZYEkmO0DFRkjMlxQQ192uz9mntremKbz7Z6Hs_5KMwFKEtZv559ItialLo_OCKe9OvOpeKNoa-aExyLyE-fUafWtMl92W_nqLf198fmh_l7Hb6s7malZYzwsv5gjHDnKotUWSuueLUWqOYUAtsiNFYWKxrIupWWcl1rXCrtRQMM2JF7Rw7RRe7uqsYnkeX1tDnhl3XmcGFMYHUUmmsdAbP_wGXYYxD7g0o0VITymmG1A6yMaQUXQur_HYTX4Fg2FqGJWxlwlYmbC3Du2XY5OjZvv44793ib3CvNQOXO-DFd-71vwvDr-vbvMnxchfPH-M2H3ETn0DWrBbweDOFP-rusb57UNCwNx8NmDY</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Petraco, Nicholas D. K.</creator><creator>Gil, Mark</creator><creator>Pizzola, Peter A.</creator><creator>Kubic, T. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Statistical Discrimination of Liquid Gasoline Samples from Casework</title><author>Petraco, Nicholas D. K. ; Gil, Mark ; Pizzola, Peter A. ; Kubic, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4314-bd33a3e87c181b94842cca8358d0a1a905c097157f8c649780f99653031c57ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chromatography</topic><topic>classification</topic><topic>Discriminant analysis</topic><topic>Forensic chemistry</topic><topic>forensic science</topic><topic>Gases</topic><topic>Gasoline</topic><topic>Mass spectrometry</topic><topic>multivariate</topic><topic>pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petraco, Nicholas D. K.</creatorcontrib><creatorcontrib>Gil, Mark</creatorcontrib><creatorcontrib>Pizzola, Peter A.</creatorcontrib><creatorcontrib>Kubic, T. A.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petraco, Nicholas D. K.</au><au>Gil, Mark</au><au>Pizzola, Peter A.</au><au>Kubic, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Discrimination of Liquid Gasoline Samples from Casework</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2008-09</date><risdate>2008</risdate><volume>53</volume><issue>5</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><coden>JFSCAS</coden><abstract>: The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition procedures on data from gas chromatography‐mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discriminant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross‐validated using the “jackknife” method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to develop procedures for the application of multivariate analysis to fire debris casework.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18643865</pmid><doi>10.1111/j.1556-4029.2008.00824.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1198 |
ispartof | Journal of forensic sciences, 2008-09, Vol.53 (5), p.1092-1101 |
issn | 0022-1198 1556-4029 |
language | eng |
recordid | cdi_proquest_miscellaneous_69689089 |
source | Access via Wiley Online Library |
subjects | Chromatography classification Discriminant analysis Forensic chemistry forensic science Gases Gasoline Mass spectrometry multivariate pattern recognition |
title | Statistical Discrimination of Liquid Gasoline Samples from Casework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Discrimination%20of%20Liquid%20Gasoline%20Samples%20from%20Casework&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Petraco,%20Nicholas%20D.%20K.&rft.date=2008-09&rft.volume=53&rft.issue=5&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=0022-1198&rft.eissn=1556-4029&rft.coden=JFSCAS&rft_id=info:doi/10.1111/j.1556-4029.2008.00824.x&rft_dat=%3Cproquest_cross%3E1549287591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219691242&rft_id=info:pmid/18643865&rfr_iscdi=true |