European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality

Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architectu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2008-10, Vol.41 (14), p.2946-2953
Hauptverfasser: Pauchard, Yves, Mattmann, Corinne, Kuhn, Andreas, Gasser, Jürg A, Boyd, Steven K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2953
container_issue 14
container_start_page 2946
container_title Journal of biomechanics
container_volume 41
creator Pauchard, Yves
Mattmann, Corinne
Kuhn, Andreas
Gasser, Jürg A
Boyd, Steven K
description Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.
doi_str_mv 10.1016/j.jbiomech.2008.07.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69688936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929008004053</els_id><sourcerecordid>2744106941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEokvhFSpLSNwSxvHGdjggSmkBqQikpWfLcSbUIYlTOwHtnQevQxZV6qWcfPA3vz3zTZKcUMgoUP66zdrKuh7NdZYDyAxEBow_SjZUCpbmTMLjZAOQ07TMSzhKnoXQAoDYivJpckSlhKJgxSb5cz57N6IeyM4Zi9OeuIa8X5P1YE0gu-xLRr6h9ziQ09_a12R58A25Cnb4QSbsR-d1R6Z4X4elmn0glRuQ9NZ4l2pvru2EZpo9ksmR0WNtzbQiN7Pu7LR_njxpdBfwxeE8Tq4uzr-ffUovv378fHZ6mZpCiCmVOS9kAwap5rQyJYApRZWbCnRZCKkbzk3BGEdesFzwumFcNrVhWlItodLsOHm15o7e3cwYJtXbYLDr9IBuDoqXXMqS8QdBWhbAShD_BVK6ZRF8eQ9s3eyH2K2iwLZRkqALxVcqTi4Ej40ave2130dILd5Vq_55V4sGBULB3w-fHOLnqsf6ruwgOgLvVgDjfH9Z9CpE3YOJMnyUo2pnH37j7b0I09m4Irr7iXsMd_2okCtQu2X7luUDCbCFKOYWh1LVaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034929713</pqid></control><display><type>article</type><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</creator><creatorcontrib>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</creatorcontrib><description>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2008.07.036</identifier><identifier>PMID: 18805535</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Awards and Prizes ; Biomechanical Phenomena ; Bone Density - physiology ; Computer Simulation ; Elastic Modulus ; Europe ; Female ; Finite element modeling ; Imaging, Three-Dimensional - methods ; In vivo micro-CT ; Models, Biological ; Morphological parameters ; Morphology ; Physical Medicine and Rehabilitation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Rats ; Rats, Wistar ; Shear Strength ; Three dimensional imaging ; Tibia - diagnostic imaging ; Tibia - physiology ; Trabecular bone analysis ; Trends</subject><ispartof>Journal of biomechanics, 2008-10, Vol.41 (14), p.2946-2953</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</citedby><cites>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034929713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauchard, Yves</creatorcontrib><creatorcontrib>Mattmann, Corinne</creatorcontrib><creatorcontrib>Kuhn, Andreas</creatorcontrib><creatorcontrib>Gasser, Jürg A</creatorcontrib><creatorcontrib>Boyd, Steven K</creatorcontrib><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</description><subject>Animals</subject><subject>Awards and Prizes</subject><subject>Biomechanical Phenomena</subject><subject>Bone Density - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Europe</subject><subject>Female</subject><subject>Finite element modeling</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vivo micro-CT</subject><subject>Models, Biological</subject><subject>Morphological parameters</subject><subject>Morphology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Shear Strength</subject><subject>Three dimensional imaging</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>Trabecular bone analysis</subject><subject>Trends</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksFu1DAQhiMEokvhFSpLSNwSxvHGdjggSmkBqQikpWfLcSbUIYlTOwHtnQevQxZV6qWcfPA3vz3zTZKcUMgoUP66zdrKuh7NdZYDyAxEBow_SjZUCpbmTMLjZAOQ07TMSzhKnoXQAoDYivJpckSlhKJgxSb5cz57N6IeyM4Zi9OeuIa8X5P1YE0gu-xLRr6h9ziQ09_a12R58A25Cnb4QSbsR-d1R6Z4X4elmn0glRuQ9NZ4l2pvru2EZpo9ksmR0WNtzbQiN7Pu7LR_njxpdBfwxeE8Tq4uzr-ffUovv378fHZ6mZpCiCmVOS9kAwap5rQyJYApRZWbCnRZCKkbzk3BGEdesFzwumFcNrVhWlItodLsOHm15o7e3cwYJtXbYLDr9IBuDoqXXMqS8QdBWhbAShD_BVK6ZRF8eQ9s3eyH2K2iwLZRkqALxVcqTi4Ej40ave2130dILd5Vq_55V4sGBULB3w-fHOLnqsf6ruwgOgLvVgDjfH9Z9CpE3YOJMnyUo2pnH37j7b0I09m4Irr7iXsMd_2okCtQu2X7luUDCbCFKOYWh1LVaw</recordid><startdate>20081020</startdate><enddate>20081020</enddate><creator>Pauchard, Yves</creator><creator>Mattmann, Corinne</creator><creator>Kuhn, Andreas</creator><creator>Gasser, Jürg A</creator><creator>Boyd, Steven K</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20081020</creationdate><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><author>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Awards and Prizes</topic><topic>Biomechanical Phenomena</topic><topic>Bone Density - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Europe</topic><topic>Female</topic><topic>Finite element modeling</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vivo micro-CT</topic><topic>Models, Biological</topic><topic>Morphological parameters</topic><topic>Morphology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Shear Strength</topic><topic>Three dimensional imaging</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>Trabecular bone analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauchard, Yves</creatorcontrib><creatorcontrib>Mattmann, Corinne</creatorcontrib><creatorcontrib>Kuhn, Andreas</creatorcontrib><creatorcontrib>Gasser, Jürg A</creatorcontrib><creatorcontrib>Boyd, Steven K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauchard, Yves</au><au>Mattmann, Corinne</au><au>Kuhn, Andreas</au><au>Gasser, Jürg A</au><au>Boyd, Steven K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2008-10-20</date><risdate>2008</risdate><volume>41</volume><issue>14</issue><spage>2946</spage><epage>2953</epage><pages>2946-2953</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18805535</pmid><doi>10.1016/j.jbiomech.2008.07.036</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2008-10, Vol.41 (14), p.2946-2953
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_69688936
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Animals
Awards and Prizes
Biomechanical Phenomena
Bone Density - physiology
Computer Simulation
Elastic Modulus
Europe
Female
Finite element modeling
Imaging, Three-Dimensional - methods
In vivo micro-CT
Models, Biological
Morphological parameters
Morphology
Physical Medicine and Rehabilitation
Radiographic Image Interpretation, Computer-Assisted - methods
Rats
Rats, Wistar
Shear Strength
Three dimensional imaging
Tibia - diagnostic imaging
Tibia - physiology
Trabecular bone analysis
Trends
title European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=European%20Society%20of%20Biomechanics%20S.M.%20Perren%20Award%202008:%20Using%20temporal%20trends%20of%203D%20bone%20micro-architecture%20to%20predict%20bone%20quality&rft.jtitle=Journal%20of%20biomechanics&rft.au=Pauchard,%20Yves&rft.date=2008-10-20&rft.volume=41&rft.issue=14&rft.spage=2946&rft.epage=2953&rft.pages=2946-2953&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2008.07.036&rft_dat=%3Cproquest_cross%3E2744106941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034929713&rft_id=info:pmid/18805535&rft_els_id=S0021929008004053&rfr_iscdi=true