European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality
Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architectu...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2008-10, Vol.41 (14), p.2946-2953 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2953 |
---|---|
container_issue | 14 |
container_start_page | 2946 |
container_title | Journal of biomechanics |
container_volume | 41 |
creator | Pauchard, Yves Mattmann, Corinne Kuhn, Andreas Gasser, Jürg A Boyd, Steven K |
description | Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis. |
doi_str_mv | 10.1016/j.jbiomech.2008.07.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69688936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929008004053</els_id><sourcerecordid>2744106941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEokvhFSpLSNwSxvHGdjggSmkBqQikpWfLcSbUIYlTOwHtnQevQxZV6qWcfPA3vz3zTZKcUMgoUP66zdrKuh7NdZYDyAxEBow_SjZUCpbmTMLjZAOQ07TMSzhKnoXQAoDYivJpckSlhKJgxSb5cz57N6IeyM4Zi9OeuIa8X5P1YE0gu-xLRr6h9ziQ09_a12R58A25Cnb4QSbsR-d1R6Z4X4elmn0glRuQ9NZ4l2pvru2EZpo9ksmR0WNtzbQiN7Pu7LR_njxpdBfwxeE8Tq4uzr-ffUovv378fHZ6mZpCiCmVOS9kAwap5rQyJYApRZWbCnRZCKkbzk3BGEdesFzwumFcNrVhWlItodLsOHm15o7e3cwYJtXbYLDr9IBuDoqXXMqS8QdBWhbAShD_BVK6ZRF8eQ9s3eyH2K2iwLZRkqALxVcqTi4Ej40ave2130dILd5Vq_55V4sGBULB3w-fHOLnqsf6ruwgOgLvVgDjfH9Z9CpE3YOJMnyUo2pnH37j7b0I09m4Irr7iXsMd_2okCtQu2X7luUDCbCFKOYWh1LVaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034929713</pqid></control><display><type>article</type><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</creator><creatorcontrib>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</creatorcontrib><description>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2008.07.036</identifier><identifier>PMID: 18805535</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Awards and Prizes ; Biomechanical Phenomena ; Bone Density - physiology ; Computer Simulation ; Elastic Modulus ; Europe ; Female ; Finite element modeling ; Imaging, Three-Dimensional - methods ; In vivo micro-CT ; Models, Biological ; Morphological parameters ; Morphology ; Physical Medicine and Rehabilitation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Rats ; Rats, Wistar ; Shear Strength ; Three dimensional imaging ; Tibia - diagnostic imaging ; Tibia - physiology ; Trabecular bone analysis ; Trends</subject><ispartof>Journal of biomechanics, 2008-10, Vol.41 (14), p.2946-2953</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</citedby><cites>FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034929713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauchard, Yves</creatorcontrib><creatorcontrib>Mattmann, Corinne</creatorcontrib><creatorcontrib>Kuhn, Andreas</creatorcontrib><creatorcontrib>Gasser, Jürg A</creatorcontrib><creatorcontrib>Boyd, Steven K</creatorcontrib><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</description><subject>Animals</subject><subject>Awards and Prizes</subject><subject>Biomechanical Phenomena</subject><subject>Bone Density - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Europe</subject><subject>Female</subject><subject>Finite element modeling</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vivo micro-CT</subject><subject>Models, Biological</subject><subject>Morphological parameters</subject><subject>Morphology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Shear Strength</subject><subject>Three dimensional imaging</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>Trabecular bone analysis</subject><subject>Trends</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksFu1DAQhiMEokvhFSpLSNwSxvHGdjggSmkBqQikpWfLcSbUIYlTOwHtnQevQxZV6qWcfPA3vz3zTZKcUMgoUP66zdrKuh7NdZYDyAxEBow_SjZUCpbmTMLjZAOQ07TMSzhKnoXQAoDYivJpckSlhKJgxSb5cz57N6IeyM4Zi9OeuIa8X5P1YE0gu-xLRr6h9ziQ09_a12R58A25Cnb4QSbsR-d1R6Z4X4elmn0glRuQ9NZ4l2pvru2EZpo9ksmR0WNtzbQiN7Pu7LR_njxpdBfwxeE8Tq4uzr-ffUovv378fHZ6mZpCiCmVOS9kAwap5rQyJYApRZWbCnRZCKkbzk3BGEdesFzwumFcNrVhWlItodLsOHm15o7e3cwYJtXbYLDr9IBuDoqXXMqS8QdBWhbAShD_BVK6ZRF8eQ9s3eyH2K2iwLZRkqALxVcqTi4Ej40ave2130dILd5Vq_55V4sGBULB3w-fHOLnqsf6ruwgOgLvVgDjfH9Z9CpE3YOJMnyUo2pnH37j7b0I09m4Irr7iXsMd_2okCtQu2X7luUDCbCFKOYWh1LVaw</recordid><startdate>20081020</startdate><enddate>20081020</enddate><creator>Pauchard, Yves</creator><creator>Mattmann, Corinne</creator><creator>Kuhn, Andreas</creator><creator>Gasser, Jürg A</creator><creator>Boyd, Steven K</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20081020</creationdate><title>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</title><author>Pauchard, Yves ; Mattmann, Corinne ; Kuhn, Andreas ; Gasser, Jürg A ; Boyd, Steven K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-82658f0ce1a61bc900c97b2cb0a9578af66c5336e653276df368fdc3a81a80ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Awards and Prizes</topic><topic>Biomechanical Phenomena</topic><topic>Bone Density - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Europe</topic><topic>Female</topic><topic>Finite element modeling</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vivo micro-CT</topic><topic>Models, Biological</topic><topic>Morphological parameters</topic><topic>Morphology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Shear Strength</topic><topic>Three dimensional imaging</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>Trabecular bone analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauchard, Yves</creatorcontrib><creatorcontrib>Mattmann, Corinne</creatorcontrib><creatorcontrib>Kuhn, Andreas</creatorcontrib><creatorcontrib>Gasser, Jürg A</creatorcontrib><creatorcontrib>Boyd, Steven K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauchard, Yves</au><au>Mattmann, Corinne</au><au>Kuhn, Andreas</au><au>Gasser, Jürg A</au><au>Boyd, Steven K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2008-10-20</date><risdate>2008</risdate><volume>41</volume><issue>14</issue><spage>2946</spage><epage>2953</epage><pages>2946-2953</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography ( μ CT ) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N = 5 ) or sham operated (SHAM; N = 6 ). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, μ FE ) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 μ m . Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; - 1.1 % , 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus ( E 1 ; 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18805535</pmid><doi>10.1016/j.jbiomech.2008.07.036</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2008-10, Vol.41 (14), p.2946-2953 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_69688936 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Animals Awards and Prizes Biomechanical Phenomena Bone Density - physiology Computer Simulation Elastic Modulus Europe Female Finite element modeling Imaging, Three-Dimensional - methods In vivo micro-CT Models, Biological Morphological parameters Morphology Physical Medicine and Rehabilitation Radiographic Image Interpretation, Computer-Assisted - methods Rats Rats, Wistar Shear Strength Three dimensional imaging Tibia - diagnostic imaging Tibia - physiology Trabecular bone analysis Trends |
title | European Society of Biomechanics S.M. Perren Award 2008: Using temporal trends of 3D bone micro-architecture to predict bone quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=European%20Society%20of%20Biomechanics%20S.M.%20Perren%20Award%202008:%20Using%20temporal%20trends%20of%203D%20bone%20micro-architecture%20to%20predict%20bone%20quality&rft.jtitle=Journal%20of%20biomechanics&rft.au=Pauchard,%20Yves&rft.date=2008-10-20&rft.volume=41&rft.issue=14&rft.spage=2946&rft.epage=2953&rft.pages=2946-2953&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2008.07.036&rft_dat=%3Cproquest_cross%3E2744106941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034929713&rft_id=info:pmid/18805535&rft_els_id=S0021929008004053&rfr_iscdi=true |