Cloning and Modeling of the First Nonmammalian CD4

We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1999-04, Vol.162 (7), p.4115-4121
Hauptverfasser: Koskinen, Riitta, Lamminmaki, Urpo, Tregaskes, Clive A, Salomonsen, Jan, Young, John R, Vainio, Olli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4121
container_issue 7
container_start_page 4115
container_title The Journal of immunology (1950)
container_volume 162
creator Koskinen, Riitta
Lamminmaki, Urpo
Tregaskes, Clive A
Salomonsen, Jan
Young, John R
Vainio, Olli
description We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.
doi_str_mv 10.4049/jimmunol.162.7.4115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69687098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17216093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-98b34f772b9b3c1636628c43698070588bdc42b45499117d8593b0f6ae45d293</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK3-AkGy0lXinUfmsZRoVai66X6YJJM2JcnUTELw35uSCt25ulw431kchG4xRAyYetyVdd03roowJ5GIGMbxGZrjOIaQc-DnaA5ASIgFFzN05f0OADgQdolmGAhgRfkckaRyTdlsAtPkwYfLbXV4XBF0Wxssy9Z3wadralPXpipNEyTP7BpdFKby9uZ4F2i9fFknb-Hq6_U9eVqFGQPVhUqmlBVCkFSlNMOcck5kxihXEgTEUqZ5xkjKYqYUxiKXsaIpFNxYFudE0QW6n7T71n331ne6Ln1mq8o01vVec8WlACX_BbEgmIOiI0gnMGud960t9L4ta9P-aAz6kFT_JdVjUi30Iem4ujvq-7S2-clmajgCDxOwLTfboWyt9mOsasSxHobhRPULJnF-eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17216093</pqid></control><display><type>article</type><title>Cloning and Modeling of the First Nonmammalian CD4</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Koskinen, Riitta ; Lamminmaki, Urpo ; Tregaskes, Clive A ; Salomonsen, Jan ; Young, John R ; Vainio, Olli</creator><creatorcontrib>Koskinen, Riitta ; Lamminmaki, Urpo ; Tregaskes, Clive A ; Salomonsen, Jan ; Young, John R ; Vainio, Olli</creatorcontrib><description>We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.162.7.4115</identifier><identifier>PMID: 10201936</identifier><language>eng</language><publisher>United States: Am Assoc Immnol</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies, Monoclonal - chemistry ; Antibody Specificity ; Base Sequence ; CD4 Antigens - chemistry ; CD4 Antigens - genetics ; CD4 Antigens - metabolism ; Cell Line ; Chickens - genetics ; Chickens - immunology ; Cloning, Molecular ; Cytoplasm - immunology ; Cytoplasm - metabolism ; DNA, Complementary - immunology ; DNA, Complementary - isolation &amp; purification ; Humans ; Models, Molecular ; Molecular Sequence Data ; T-Lymphocytes - metabolism</subject><ispartof>The Journal of immunology (1950), 1999-04, Vol.162 (7), p.4115-4121</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-98b34f772b9b3c1636628c43698070588bdc42b45499117d8593b0f6ae45d293</citedby><cites>FETCH-LOGICAL-c409t-98b34f772b9b3c1636628c43698070588bdc42b45499117d8593b0f6ae45d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10201936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koskinen, Riitta</creatorcontrib><creatorcontrib>Lamminmaki, Urpo</creatorcontrib><creatorcontrib>Tregaskes, Clive A</creatorcontrib><creatorcontrib>Salomonsen, Jan</creatorcontrib><creatorcontrib>Young, John R</creatorcontrib><creatorcontrib>Vainio, Olli</creatorcontrib><title>Cloning and Modeling of the First Nonmammalian CD4</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibody Specificity</subject><subject>Base Sequence</subject><subject>CD4 Antigens - chemistry</subject><subject>CD4 Antigens - genetics</subject><subject>CD4 Antigens - metabolism</subject><subject>Cell Line</subject><subject>Chickens - genetics</subject><subject>Chickens - immunology</subject><subject>Cloning, Molecular</subject><subject>Cytoplasm - immunology</subject><subject>Cytoplasm - metabolism</subject><subject>DNA, Complementary - immunology</subject><subject>DNA, Complementary - isolation &amp; purification</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>T-Lymphocytes - metabolism</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AURgdRbK3-AkGy0lXinUfmsZRoVai66X6YJJM2JcnUTELw35uSCt25ulw431kchG4xRAyYetyVdd03roowJ5GIGMbxGZrjOIaQc-DnaA5ASIgFFzN05f0OADgQdolmGAhgRfkckaRyTdlsAtPkwYfLbXV4XBF0Wxssy9Z3wadralPXpipNEyTP7BpdFKby9uZ4F2i9fFknb-Hq6_U9eVqFGQPVhUqmlBVCkFSlNMOcck5kxihXEgTEUqZ5xkjKYqYUxiKXsaIpFNxYFudE0QW6n7T71n331ne6Ln1mq8o01vVec8WlACX_BbEgmIOiI0gnMGud960t9L4ta9P-aAz6kFT_JdVjUi30Iem4ujvq-7S2-clmajgCDxOwLTfboWyt9mOsasSxHobhRPULJnF-eQ</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Koskinen, Riitta</creator><creator>Lamminmaki, Urpo</creator><creator>Tregaskes, Clive A</creator><creator>Salomonsen, Jan</creator><creator>Young, John R</creator><creator>Vainio, Olli</creator><general>Am Assoc Immnol</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>19990401</creationdate><title>Cloning and Modeling of the First Nonmammalian CD4</title><author>Koskinen, Riitta ; Lamminmaki, Urpo ; Tregaskes, Clive A ; Salomonsen, Jan ; Young, John R ; Vainio, Olli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-98b34f772b9b3c1636628c43698070588bdc42b45499117d8593b0f6ae45d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibody Specificity</topic><topic>Base Sequence</topic><topic>CD4 Antigens - chemistry</topic><topic>CD4 Antigens - genetics</topic><topic>CD4 Antigens - metabolism</topic><topic>Cell Line</topic><topic>Chickens - genetics</topic><topic>Chickens - immunology</topic><topic>Cloning, Molecular</topic><topic>Cytoplasm - immunology</topic><topic>Cytoplasm - metabolism</topic><topic>DNA, Complementary - immunology</topic><topic>DNA, Complementary - isolation &amp; purification</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>T-Lymphocytes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koskinen, Riitta</creatorcontrib><creatorcontrib>Lamminmaki, Urpo</creatorcontrib><creatorcontrib>Tregaskes, Clive A</creatorcontrib><creatorcontrib>Salomonsen, Jan</creatorcontrib><creatorcontrib>Young, John R</creatorcontrib><creatorcontrib>Vainio, Olli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koskinen, Riitta</au><au>Lamminmaki, Urpo</au><au>Tregaskes, Clive A</au><au>Salomonsen, Jan</au><au>Young, John R</au><au>Vainio, Olli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning and Modeling of the First Nonmammalian CD4</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>162</volume><issue>7</issue><spage>4115</spage><epage>4121</epage><pages>4115-4121</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.</abstract><cop>United States</cop><pub>Am Assoc Immnol</pub><pmid>10201936</pmid><doi>10.4049/jimmunol.162.7.4115</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 1999-04, Vol.162 (7), p.4115-4121
issn 0022-1767
1550-6606
language eng
recordid cdi_proquest_miscellaneous_69687098
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
Antibodies, Monoclonal - chemistry
Antibody Specificity
Base Sequence
CD4 Antigens - chemistry
CD4 Antigens - genetics
CD4 Antigens - metabolism
Cell Line
Chickens - genetics
Chickens - immunology
Cloning, Molecular
Cytoplasm - immunology
Cytoplasm - metabolism
DNA, Complementary - immunology
DNA, Complementary - isolation & purification
Humans
Models, Molecular
Molecular Sequence Data
T-Lymphocytes - metabolism
title Cloning and Modeling of the First Nonmammalian CD4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20and%20Modeling%20of%20the%20First%20Nonmammalian%20CD4&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Koskinen,%20Riitta&rft.date=1999-04-01&rft.volume=162&rft.issue=7&rft.spage=4115&rft.epage=4121&rft.pages=4115-4121&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.162.7.4115&rft_dat=%3Cproquest_cross%3E17216093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17216093&rft_id=info:pmid/10201936&rfr_iscdi=true