Microbial fuel cell biosensor for in situ assessment of microbial activity
Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyt...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2008-12, Vol.24 (4), p.586-590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 586 |
container_title | Biosensors & bioelectronics |
container_volume | 24 |
creator | Tront, J.M. Fortner, J.D. Plötze, M. Hughes, J.B. Puzrin, A.M. |
description | Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to
in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about
in situ microbial respiration and analyte concentration was examined in column systems, where
Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with
G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (
R
2
=
0.92) was developed between current values (0–0.30
mA) and acetate concentrations (0–2.3
mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of
in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes. |
doi_str_mv | 10.1016/j.bios.2008.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69676729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566308002583</els_id><sourcerecordid>69676729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoznh5ARfSlbvWk6Q5ScGNiFcUN7oOaZpChl7Gph2YtzdlBt3p4pDF-b6fk5-QCwoZBYrXq6z0fcgYgMoAMwA8IEuqJE9zxsUhWUIhMBWIfEFOQlgBgKQFHJMFVcioYHRJXt68HfrSmyapJ9ck1jVNMse6LvRDUsfxXRL8OCUmBBdC67ox6euk_fGMHf3Gj9szclSbJrjz_XtKPh_uP-6e0tf3x-e729fUciXGtEIpuVFCCF4qaQrD4yGoeMWhwlwxKWoBDCxyBnGZMzDU5CXkRaWcNMhPydUudz30X5MLo259mO82neunoLFAiZIV_4KxOGQ5pRFkOzB-KYTB1Xo9-NYMW01Bz1XrlZ47mQ2lAXUUo3S5T5_K1lW_yr7bCNzsABfL2Hg36GC966yr_ODsqKve_5X_DRIGjig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20062411</pqid></control><display><type>article</type><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</creator><creatorcontrib>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</creatorcontrib><description>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to
in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about
in situ microbial respiration and analyte concentration was examined in column systems, where
Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with
G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (
R
2
=
0.92) was developed between current values (0–0.30
mA) and acetate concentrations (0–2.3
mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of
in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2008.06.006</identifier><identifier>PMID: 18621521</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biological Assay - instrumentation ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensor ; Colony Count, Microbial - instrumentation ; Colony Count, Microbial - methods ; Contaminant reduction ; Electric Power Supplies ; Electrochemistry - instrumentation ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Geobacter - isolation & purification ; Geobacter - physiology ; Geobacter sulfurreducens ; Groundwater pollution ; Microbial respiration ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Biosensors & bioelectronics, 2008-12, Vol.24 (4), p.586-590</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</citedby><cites>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2008.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18621521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tront, J.M.</creatorcontrib><creatorcontrib>Fortner, J.D.</creatorcontrib><creatorcontrib>Plötze, M.</creatorcontrib><creatorcontrib>Hughes, J.B.</creatorcontrib><creatorcontrib>Puzrin, A.M.</creatorcontrib><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to
in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about
in situ microbial respiration and analyte concentration was examined in column systems, where
Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with
G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (
R
2
=
0.92) was developed between current values (0–0.30
mA) and acetate concentrations (0–2.3
mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of
in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</description><subject>Biological Assay - instrumentation</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensor</subject><subject>Colony Count, Microbial - instrumentation</subject><subject>Colony Count, Microbial - methods</subject><subject>Contaminant reduction</subject><subject>Electric Power Supplies</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Geobacter - isolation & purification</subject><subject>Geobacter - physiology</subject><subject>Geobacter sulfurreducens</subject><subject>Groundwater pollution</subject><subject>Microbial respiration</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMoznh5ARfSlbvWk6Q5ScGNiFcUN7oOaZpChl7Gph2YtzdlBt3p4pDF-b6fk5-QCwoZBYrXq6z0fcgYgMoAMwA8IEuqJE9zxsUhWUIhMBWIfEFOQlgBgKQFHJMFVcioYHRJXt68HfrSmyapJ9ck1jVNMse6LvRDUsfxXRL8OCUmBBdC67ox6euk_fGMHf3Gj9szclSbJrjz_XtKPh_uP-6e0tf3x-e729fUciXGtEIpuVFCCF4qaQrD4yGoeMWhwlwxKWoBDCxyBnGZMzDU5CXkRaWcNMhPydUudz30X5MLo259mO82neunoLFAiZIV_4KxOGQ5pRFkOzB-KYTB1Xo9-NYMW01Bz1XrlZ47mQ2lAXUUo3S5T5_K1lW_yr7bCNzsABfL2Hg36GC966yr_ODsqKve_5X_DRIGjig</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Tront, J.M.</creator><creator>Fortner, J.D.</creator><creator>Plötze, M.</creator><creator>Hughes, J.B.</creator><creator>Puzrin, A.M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><author>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Assay - instrumentation</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensor</topic><topic>Colony Count, Microbial - instrumentation</topic><topic>Colony Count, Microbial - methods</topic><topic>Contaminant reduction</topic><topic>Electric Power Supplies</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Geobacter - isolation & purification</topic><topic>Geobacter - physiology</topic><topic>Geobacter sulfurreducens</topic><topic>Groundwater pollution</topic><topic>Microbial respiration</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tront, J.M.</creatorcontrib><creatorcontrib>Fortner, J.D.</creatorcontrib><creatorcontrib>Plötze, M.</creatorcontrib><creatorcontrib>Hughes, J.B.</creatorcontrib><creatorcontrib>Puzrin, A.M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tront, J.M.</au><au>Fortner, J.D.</au><au>Plötze, M.</au><au>Hughes, J.B.</au><au>Puzrin, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial fuel cell biosensor for in situ assessment of microbial activity</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>24</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to
in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about
in situ microbial respiration and analyte concentration was examined in column systems, where
Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with
G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (
R
2
=
0.92) was developed between current values (0–0.30
mA) and acetate concentrations (0–2.3
mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of
in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>18621521</pmid><doi>10.1016/j.bios.2008.06.006</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2008-12, Vol.24 (4), p.586-590 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_69676729 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biological Assay - instrumentation Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensor Colony Count, Microbial - instrumentation Colony Count, Microbial - methods Contaminant reduction Electric Power Supplies Electrochemistry - instrumentation Electrodes Equipment Design Equipment Failure Analysis Geobacter - isolation & purification Geobacter - physiology Geobacter sulfurreducens Groundwater pollution Microbial respiration Reproducibility of Results Sensitivity and Specificity |
title | Microbial fuel cell biosensor for in situ assessment of microbial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20fuel%20cell%20biosensor%20for%20in%20situ%20assessment%20of%20microbial%20activity&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Tront,%20J.M.&rft.date=2008-12-01&rft.volume=24&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2008.06.006&rft_dat=%3Cproquest_cross%3E69676729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20062411&rft_id=info:pmid/18621521&rft_els_id=S0956566308002583&rfr_iscdi=true |