Microbial fuel cell biosensor for in situ assessment of microbial activity

Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2008-12, Vol.24 (4), p.586-590
Hauptverfasser: Tront, J.M., Fortner, J.D., Plötze, M., Hughes, J.B., Puzrin, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 586
container_title Biosensors & bioelectronics
container_volume 24
creator Tront, J.M.
Fortner, J.D.
Plötze, M.
Hughes, J.B.
Puzrin, A.M.
description Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation ( R 2 = 0.92) was developed between current values (0–0.30 mA) and acetate concentrations (0–2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.
doi_str_mv 10.1016/j.bios.2008.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69676729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566308002583</els_id><sourcerecordid>69676729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoznh5ARfSlbvWk6Q5ScGNiFcUN7oOaZpChl7Gph2YtzdlBt3p4pDF-b6fk5-QCwoZBYrXq6z0fcgYgMoAMwA8IEuqJE9zxsUhWUIhMBWIfEFOQlgBgKQFHJMFVcioYHRJXt68HfrSmyapJ9ck1jVNMse6LvRDUsfxXRL8OCUmBBdC67ox6euk_fGMHf3Gj9szclSbJrjz_XtKPh_uP-6e0tf3x-e729fUciXGtEIpuVFCCF4qaQrD4yGoeMWhwlwxKWoBDCxyBnGZMzDU5CXkRaWcNMhPydUudz30X5MLo259mO82neunoLFAiZIV_4KxOGQ5pRFkOzB-KYTB1Xo9-NYMW01Bz1XrlZ47mQ2lAXUUo3S5T5_K1lW_yr7bCNzsABfL2Hg36GC966yr_ODsqKve_5X_DRIGjig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20062411</pqid></control><display><type>article</type><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</creator><creatorcontrib>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</creatorcontrib><description>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation ( R 2 = 0.92) was developed between current values (0–0.30 mA) and acetate concentrations (0–2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2008.06.006</identifier><identifier>PMID: 18621521</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biological Assay - instrumentation ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensor ; Colony Count, Microbial - instrumentation ; Colony Count, Microbial - methods ; Contaminant reduction ; Electric Power Supplies ; Electrochemistry - instrumentation ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Geobacter - isolation &amp; purification ; Geobacter - physiology ; Geobacter sulfurreducens ; Groundwater pollution ; Microbial respiration ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Biosensors &amp; bioelectronics, 2008-12, Vol.24 (4), p.586-590</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</citedby><cites>FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2008.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18621521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tront, J.M.</creatorcontrib><creatorcontrib>Fortner, J.D.</creatorcontrib><creatorcontrib>Plötze, M.</creatorcontrib><creatorcontrib>Hughes, J.B.</creatorcontrib><creatorcontrib>Puzrin, A.M.</creatorcontrib><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation ( R 2 = 0.92) was developed between current values (0–0.30 mA) and acetate concentrations (0–2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</description><subject>Biological Assay - instrumentation</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensor</subject><subject>Colony Count, Microbial - instrumentation</subject><subject>Colony Count, Microbial - methods</subject><subject>Contaminant reduction</subject><subject>Electric Power Supplies</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Geobacter - isolation &amp; purification</subject><subject>Geobacter - physiology</subject><subject>Geobacter sulfurreducens</subject><subject>Groundwater pollution</subject><subject>Microbial respiration</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMoznh5ARfSlbvWk6Q5ScGNiFcUN7oOaZpChl7Gph2YtzdlBt3p4pDF-b6fk5-QCwoZBYrXq6z0fcgYgMoAMwA8IEuqJE9zxsUhWUIhMBWIfEFOQlgBgKQFHJMFVcioYHRJXt68HfrSmyapJ9ck1jVNMse6LvRDUsfxXRL8OCUmBBdC67ox6euk_fGMHf3Gj9szclSbJrjz_XtKPh_uP-6e0tf3x-e729fUciXGtEIpuVFCCF4qaQrD4yGoeMWhwlwxKWoBDCxyBnGZMzDU5CXkRaWcNMhPydUudz30X5MLo259mO82neunoLFAiZIV_4KxOGQ5pRFkOzB-KYTB1Xo9-NYMW01Bz1XrlZ47mQ2lAXUUo3S5T5_K1lW_yr7bCNzsABfL2Hg36GC966yr_ODsqKve_5X_DRIGjig</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Tront, J.M.</creator><creator>Fortner, J.D.</creator><creator>Plötze, M.</creator><creator>Hughes, J.B.</creator><creator>Puzrin, A.M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Microbial fuel cell biosensor for in situ assessment of microbial activity</title><author>Tront, J.M. ; Fortner, J.D. ; Plötze, M. ; Hughes, J.B. ; Puzrin, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d6773a85553b87a9a3521683d30d648275f5020c63209a3420a1a4b049d8e7a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Assay - instrumentation</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensor</topic><topic>Colony Count, Microbial - instrumentation</topic><topic>Colony Count, Microbial - methods</topic><topic>Contaminant reduction</topic><topic>Electric Power Supplies</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Geobacter - isolation &amp; purification</topic><topic>Geobacter - physiology</topic><topic>Geobacter sulfurreducens</topic><topic>Groundwater pollution</topic><topic>Microbial respiration</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tront, J.M.</creatorcontrib><creatorcontrib>Fortner, J.D.</creatorcontrib><creatorcontrib>Plötze, M.</creatorcontrib><creatorcontrib>Hughes, J.B.</creatorcontrib><creatorcontrib>Puzrin, A.M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tront, J.M.</au><au>Fortner, J.D.</au><au>Plötze, M.</au><au>Hughes, J.B.</au><au>Puzrin, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial fuel cell biosensor for in situ assessment of microbial activity</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>24</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation ( R 2 = 0.92) was developed between current values (0–0.30 mA) and acetate concentrations (0–2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>18621521</pmid><doi>10.1016/j.bios.2008.06.006</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2008-12, Vol.24 (4), p.586-590
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_69676729
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biological Assay - instrumentation
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensor
Colony Count, Microbial - instrumentation
Colony Count, Microbial - methods
Contaminant reduction
Electric Power Supplies
Electrochemistry - instrumentation
Electrodes
Equipment Design
Equipment Failure Analysis
Geobacter - isolation & purification
Geobacter - physiology
Geobacter sulfurreducens
Groundwater pollution
Microbial respiration
Reproducibility of Results
Sensitivity and Specificity
title Microbial fuel cell biosensor for in situ assessment of microbial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20fuel%20cell%20biosensor%20for%20in%20situ%20assessment%20of%20microbial%20activity&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Tront,%20J.M.&rft.date=2008-12-01&rft.volume=24&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2008.06.006&rft_dat=%3Cproquest_cross%3E69676729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20062411&rft_id=info:pmid/18621521&rft_els_id=S0956566308002583&rfr_iscdi=true