Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks

In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2008-10, Vol.254 (4), p.817-820
Hauptverfasser: Rezaei, Mohammad Ali, Abdolmaleki, Parviz, Karami, Zahra, Asadabadi, Ebrahim Barzegari, Sherafat, Mohammad Amin, Abrishami-Moghaddam, Hamid, Fadaie, Marziyeh, Forouzanfar, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 4
container_start_page 817
container_title Journal of theoretical biology
container_volume 254
creator Rezaei, Mohammad Ali
Abdolmaleki, Parviz
Karami, Zahra
Asadabadi, Ebrahim Barzegari
Sherafat, Mohammad Amin
Abrishami-Moghaddam, Hamid
Fadaie, Marziyeh
Forouzanfar, Mohammad
description In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.
doi_str_mv 10.1016/j.jtbi.2008.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69673452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308003597</els_id><sourcerecordid>20974505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</originalsourceid><addsrcrecordid>eNqFkT1rHDEQhkVIiM9O_oCLsFW6XY-k1a4EboyxY4PBLuLWQh-zoPN-XCSdzf1767iDdEk1gnnmZeYRIecUGgq0u1g362xDwwBkA30DlH0iKwpK1FK09DNZATBWC6r4CTlNaQ0AquXdV3JCZaeYoHRFXp4i-uByWOZqGaoJJxvNjNUmLhnDXOXdBlNld6Vj5rRH3s0bjpgrM5txl0IqD185k5zx6KsZt9GMpeT3Jb6mb-TLYMaE34_1jDzf3vy-vqsfHn_dX1891I5LkWvGB6-w85ZJhbbvUTirWC-5ohS5671jqpPMKqPEAEIxj7RVSjjJWzlQy8_Iz0Nu2fvPFlPWU0gOx7HcsmyT7lTX81aw_4IMVN8KEAVkB9DFJaWIg97EMJm40xT0Xr9e671-vdevoddFfxn6cUzf2gn935Gj7wJcHgAsMt4CRp1cwNmVP4josvZL-Ff-B_m-lvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20974505</pqid></control><display><type>article</type><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</creator><creatorcontrib>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</creatorcontrib><description>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.07.012</identifier><identifier>PMID: 18692511</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Databases, Protein ; Discrete wavelet transform ; Feature extraction ; Hydropathy plot ; Membrane Proteins - chemistry ; Membrane Proteins - classification ; Models, Chemical ; Neural Networks (Computer)</subject><ispartof>Journal of theoretical biology, 2008-10, Vol.254 (4), p.817-820</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</citedby><cites>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18692511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezaei, Mohammad Ali</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Karami, Zahra</creatorcontrib><creatorcontrib>Asadabadi, Ebrahim Barzegari</creatorcontrib><creatorcontrib>Sherafat, Mohammad Amin</creatorcontrib><creatorcontrib>Abrishami-Moghaddam, Hamid</creatorcontrib><creatorcontrib>Fadaie, Marziyeh</creatorcontrib><creatorcontrib>Forouzanfar, Mohammad</creatorcontrib><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Databases, Protein</subject><subject>Discrete wavelet transform</subject><subject>Feature extraction</subject><subject>Hydropathy plot</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - classification</subject><subject>Models, Chemical</subject><subject>Neural Networks (Computer)</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1rHDEQhkVIiM9O_oCLsFW6XY-k1a4EboyxY4PBLuLWQh-zoPN-XCSdzf1767iDdEk1gnnmZeYRIecUGgq0u1g362xDwwBkA30DlH0iKwpK1FK09DNZATBWC6r4CTlNaQ0AquXdV3JCZaeYoHRFXp4i-uByWOZqGaoJJxvNjNUmLhnDXOXdBlNld6Vj5rRH3s0bjpgrM5txl0IqD185k5zx6KsZt9GMpeT3Jb6mb-TLYMaE34_1jDzf3vy-vqsfHn_dX1891I5LkWvGB6-w85ZJhbbvUTirWC-5ohS5671jqpPMKqPEAEIxj7RVSjjJWzlQy8_Iz0Nu2fvPFlPWU0gOx7HcsmyT7lTX81aw_4IMVN8KEAVkB9DFJaWIg97EMJm40xT0Xr9e671-vdevoddFfxn6cUzf2gn935Gj7wJcHgAsMt4CRp1cwNmVP4josvZL-Ff-B_m-lvw</recordid><startdate>20081021</startdate><enddate>20081021</enddate><creator>Rezaei, Mohammad Ali</creator><creator>Abdolmaleki, Parviz</creator><creator>Karami, Zahra</creator><creator>Asadabadi, Ebrahim Barzegari</creator><creator>Sherafat, Mohammad Amin</creator><creator>Abrishami-Moghaddam, Hamid</creator><creator>Fadaie, Marziyeh</creator><creator>Forouzanfar, Mohammad</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081021</creationdate><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><author>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Databases, Protein</topic><topic>Discrete wavelet transform</topic><topic>Feature extraction</topic><topic>Hydropathy plot</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - classification</topic><topic>Models, Chemical</topic><topic>Neural Networks (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Mohammad Ali</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Karami, Zahra</creatorcontrib><creatorcontrib>Asadabadi, Ebrahim Barzegari</creatorcontrib><creatorcontrib>Sherafat, Mohammad Amin</creatorcontrib><creatorcontrib>Abrishami-Moghaddam, Hamid</creatorcontrib><creatorcontrib>Fadaie, Marziyeh</creatorcontrib><creatorcontrib>Forouzanfar, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei, Mohammad Ali</au><au>Abdolmaleki, Parviz</au><au>Karami, Zahra</au><au>Asadabadi, Ebrahim Barzegari</au><au>Sherafat, Mohammad Amin</au><au>Abrishami-Moghaddam, Hamid</au><au>Fadaie, Marziyeh</au><au>Forouzanfar, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2008-10-21</date><risdate>2008</risdate><volume>254</volume><issue>4</issue><spage>817</spage><epage>820</epage><pages>817-820</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18692511</pmid><doi>10.1016/j.jtbi.2008.07.012</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2008-10, Vol.254 (4), p.817-820
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_69673452
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Animals
Databases, Protein
Discrete wavelet transform
Feature extraction
Hydropathy plot
Membrane Proteins - chemistry
Membrane Proteins - classification
Models, Chemical
Neural Networks (Computer)
title Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20membrane%20protein%20types%20by%20means%20of%20wavelet%20analysis%20and%20cascaded%20neural%20networks&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Rezaei,%20Mohammad%20Ali&rft.date=2008-10-21&rft.volume=254&rft.issue=4&rft.spage=817&rft.epage=820&rft.pages=817-820&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.07.012&rft_dat=%3Cproquest_cross%3E20974505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20974505&rft_id=info:pmid/18692511&rft_els_id=S0022519308003597&rfr_iscdi=true