Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks
In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. Th...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2008-10, Vol.254 (4), p.817-820 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 4 |
container_start_page | 817 |
container_title | Journal of theoretical biology |
container_volume | 254 |
creator | Rezaei, Mohammad Ali Abdolmaleki, Parviz Karami, Zahra Asadabadi, Ebrahim Barzegari Sherafat, Mohammad Amin Abrishami-Moghaddam, Hamid Fadaie, Marziyeh Forouzanfar, Mohammad |
description | In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility. |
doi_str_mv | 10.1016/j.jtbi.2008.07.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69673452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308003597</els_id><sourcerecordid>20974505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</originalsourceid><addsrcrecordid>eNqFkT1rHDEQhkVIiM9O_oCLsFW6XY-k1a4EboyxY4PBLuLWQh-zoPN-XCSdzf1767iDdEk1gnnmZeYRIecUGgq0u1g362xDwwBkA30DlH0iKwpK1FK09DNZATBWC6r4CTlNaQ0AquXdV3JCZaeYoHRFXp4i-uByWOZqGaoJJxvNjNUmLhnDXOXdBlNld6Vj5rRH3s0bjpgrM5txl0IqD185k5zx6KsZt9GMpeT3Jb6mb-TLYMaE34_1jDzf3vy-vqsfHn_dX1891I5LkWvGB6-w85ZJhbbvUTirWC-5ohS5671jqpPMKqPEAEIxj7RVSjjJWzlQy8_Iz0Nu2fvPFlPWU0gOx7HcsmyT7lTX81aw_4IMVN8KEAVkB9DFJaWIg97EMJm40xT0Xr9e671-vdevoddFfxn6cUzf2gn935Gj7wJcHgAsMt4CRp1cwNmVP4josvZL-Ff-B_m-lvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20974505</pqid></control><display><type>article</type><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</creator><creatorcontrib>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</creatorcontrib><description>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.07.012</identifier><identifier>PMID: 18692511</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Databases, Protein ; Discrete wavelet transform ; Feature extraction ; Hydropathy plot ; Membrane Proteins - chemistry ; Membrane Proteins - classification ; Models, Chemical ; Neural Networks (Computer)</subject><ispartof>Journal of theoretical biology, 2008-10, Vol.254 (4), p.817-820</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</citedby><cites>FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18692511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezaei, Mohammad Ali</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Karami, Zahra</creatorcontrib><creatorcontrib>Asadabadi, Ebrahim Barzegari</creatorcontrib><creatorcontrib>Sherafat, Mohammad Amin</creatorcontrib><creatorcontrib>Abrishami-Moghaddam, Hamid</creatorcontrib><creatorcontrib>Fadaie, Marziyeh</creatorcontrib><creatorcontrib>Forouzanfar, Mohammad</creatorcontrib><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Databases, Protein</subject><subject>Discrete wavelet transform</subject><subject>Feature extraction</subject><subject>Hydropathy plot</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - classification</subject><subject>Models, Chemical</subject><subject>Neural Networks (Computer)</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1rHDEQhkVIiM9O_oCLsFW6XY-k1a4EboyxY4PBLuLWQh-zoPN-XCSdzf1767iDdEk1gnnmZeYRIecUGgq0u1g362xDwwBkA30DlH0iKwpK1FK09DNZATBWC6r4CTlNaQ0AquXdV3JCZaeYoHRFXp4i-uByWOZqGaoJJxvNjNUmLhnDXOXdBlNld6Vj5rRH3s0bjpgrM5txl0IqD185k5zx6KsZt9GMpeT3Jb6mb-TLYMaE34_1jDzf3vy-vqsfHn_dX1891I5LkWvGB6-w85ZJhbbvUTirWC-5ohS5671jqpPMKqPEAEIxj7RVSjjJWzlQy8_Iz0Nu2fvPFlPWU0gOx7HcsmyT7lTX81aw_4IMVN8KEAVkB9DFJaWIg97EMJm40xT0Xr9e671-vdevoddFfxn6cUzf2gn935Gj7wJcHgAsMt4CRp1cwNmVP4josvZL-Ff-B_m-lvw</recordid><startdate>20081021</startdate><enddate>20081021</enddate><creator>Rezaei, Mohammad Ali</creator><creator>Abdolmaleki, Parviz</creator><creator>Karami, Zahra</creator><creator>Asadabadi, Ebrahim Barzegari</creator><creator>Sherafat, Mohammad Amin</creator><creator>Abrishami-Moghaddam, Hamid</creator><creator>Fadaie, Marziyeh</creator><creator>Forouzanfar, Mohammad</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081021</creationdate><title>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</title><author>Rezaei, Mohammad Ali ; Abdolmaleki, Parviz ; Karami, Zahra ; Asadabadi, Ebrahim Barzegari ; Sherafat, Mohammad Amin ; Abrishami-Moghaddam, Hamid ; Fadaie, Marziyeh ; Forouzanfar, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-23fd9e6db289eb77e5cb92783911e3c7dc29682b9a95f0592de14995c8348f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Databases, Protein</topic><topic>Discrete wavelet transform</topic><topic>Feature extraction</topic><topic>Hydropathy plot</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - classification</topic><topic>Models, Chemical</topic><topic>Neural Networks (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Mohammad Ali</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Karami, Zahra</creatorcontrib><creatorcontrib>Asadabadi, Ebrahim Barzegari</creatorcontrib><creatorcontrib>Sherafat, Mohammad Amin</creatorcontrib><creatorcontrib>Abrishami-Moghaddam, Hamid</creatorcontrib><creatorcontrib>Fadaie, Marziyeh</creatorcontrib><creatorcontrib>Forouzanfar, Mohammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei, Mohammad Ali</au><au>Abdolmaleki, Parviz</au><au>Karami, Zahra</au><au>Asadabadi, Ebrahim Barzegari</au><au>Sherafat, Mohammad Amin</au><au>Abrishami-Moghaddam, Hamid</au><au>Fadaie, Marziyeh</au><au>Forouzanfar, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2008-10-21</date><risdate>2008</risdate><volume>254</volume><issue>4</issue><spage>817</spage><epage>820</epage><pages>817-820</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In this study, membrane proteins were classified using the information hidden in their sequences. It was achieved by applying the wavelet analysis to the sequences and consequently extracting several features, each of them revealing a proportion of the information content present in the sequence. The resultant features were made normalized and subsequently fed into a cascaded model developed in order to reduce the effect of the existing bias in the dataset, rising from the difference in size of the membrane protein classes. The results indicate an improvement in prediction accuracy of the model in comparison with similar works. The application of the presented model can be extended to other fields of structural biology due to its efficiency, simplicity and flexibility.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18692511</pmid><doi>10.1016/j.jtbi.2008.07.012</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2008-10, Vol.254 (4), p.817-820 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_69673452 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Animals Databases, Protein Discrete wavelet transform Feature extraction Hydropathy plot Membrane Proteins - chemistry Membrane Proteins - classification Models, Chemical Neural Networks (Computer) |
title | Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20membrane%20protein%20types%20by%20means%20of%20wavelet%20analysis%20and%20cascaded%20neural%20networks&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Rezaei,%20Mohammad%20Ali&rft.date=2008-10-21&rft.volume=254&rft.issue=4&rft.spage=817&rft.epage=820&rft.pages=817-820&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.07.012&rft_dat=%3Cproquest_cross%3E20974505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20974505&rft_id=info:pmid/18692511&rft_els_id=S0022519308003597&rfr_iscdi=true |