Stoichiometric Zirconium Oxide Cations as Potential Building Blocks for Cluster Assembled Catalysts

Employing guided-ion-beam mass spectrometry, we identified a series of positively charged stoichiometric zirconium oxide clusters that exhibit enhanced activity and selectivity for three oxidation reactions of widespread chemical importance. Density functional theory calculations reveal that these c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2008-10, Vol.130 (42), p.13912-13920
Hauptverfasser: Johnson, Grant E, Mitrić, Roland, Tyo, Eric C, Bonačić-Koutecký, Vlasta, Castleman, A. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Employing guided-ion-beam mass spectrometry, we identified a series of positively charged stoichiometric zirconium oxide clusters that exhibit enhanced activity and selectivity for three oxidation reactions of widespread chemical importance. Density functional theory calculations reveal that these clusters all contain the same active site consisting of a radical oxygen center with an elongated zirconium−oxygen bond. Calculated energy profiles demonstrate that each oxidation reaction is highly favorable energetically and involves easily surmountable barriers. Furthermore, the active stoichiometric clusters may be regenerated by reacting oxygen-deficient clusters with a strong oxidizer. This indicates that these species may promote multiple cycles of oxidation reactions and, therefore, exhibit true catalytic behavior. The stoichiometric clusters, having structures that resemble specific sites in bulk zirconia, are promising candidates for potential incorporation into a cluster assembled catalyst material.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja803246n