Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803

Phytochromes and bacteriophytochromes in plants and some species of bacteria, respectively, are photoreceptors that bind linear tetrapyrroles and can respond to red and far-red light signals in a reversible manner. A related but distinct photoreceptor candidate, CikA (denoted ScCikA), has been repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemical & photobiological sciences 2008-10, Vol.7 (10), p.1253-1259
Hauptverfasser: Narikawa, Rei, Kohchi, Takayuki, Ikeuchi, Masahiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phytochromes and bacteriophytochromes in plants and some species of bacteria, respectively, are photoreceptors that bind linear tetrapyrroles and can respond to red and far-red light signals in a reversible manner. A related but distinct photoreceptor candidate, CikA (denoted ScCikA), has been reported to reset the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942 after a dark pulse. However, recent studies have indicated that ScCikA does not function as a photoreceptor but as a redox sensor. Moreover, the Cys residue that covalently ligates the chromophore in phytochromes is not conserved in the ScCikA protein. On the other hand, the CikA homolog in Synechocystis sp. PCC 6803 (Slr1969, denoted SyCikA) retains this conserved Cys residue. In our present study, we have isolated the putative chromophore-binding GAF domain of SyCikA from Synechocystis and phycocyanobilin-producing Escherichia coli. Absorption spectra of both preparations showed two peaks in the UV and violet regions. Irradiation of these proteins with violet light yielded a broad peak in a yellow region at the expense of the peaks in the UV and violet regions. Interestingly, successive irradiation with yellow light did not revert these absorption spectra but a partial dark reversion to the original form was detected. These results suggest that SyCikA may function as a violet light sensor in Synechocystis.
ISSN:1474-905X
1474-9092
DOI:10.1039/b811214b