Femtonewton Force Sensing with Optically Trapped Nanotubes
We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brow...
Gespeichert in:
Veröffentlicht in: | Nano letters 2008-10, Vol.8 (10), p.3211-3216 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3216 |
---|---|
container_issue | 10 |
container_start_page | 3211 |
container_title | Nano letters |
container_volume | 8 |
creator | Maragò, O. M Jones, P. H Bonaccorso, F Scardaci, V Gucciardi, P. G Rozhin, A. G Ferrari, A. C |
description | We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science. |
doi_str_mv | 10.1021/nl8015413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69645010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69645010</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</originalsourceid><addsrcrecordid>eNptkE9LwzAYh4MoTqcHv4D0ouCh-qZp08SbDKfCcAfnuaTpW-1o05q0jH17Iyvbxcv7j4ffCw8hVxTuKUT0wdQCaBJTdkTOaMIg5FJGx_tZxBNy7twaACRL4JRMqEh5KkR6Rh7n2PStwY0vwby1GoMPNK4yX8Gm6r-DZddXWtX1NlhZ1XVYBO_KtP2Qo7sgJ6WqHV6OfUo-58-r2Wu4WL68zZ4WoWIx60PJdCHiuChZjmmKCY9yGpWlVIhSMJCFhlj7jUYF11AIzkUJqWD-nKhSCzYlt7vczrY_A7o-ayqnsa6VwXZwGZc8ToCCB-92oLatcxbLrLNVo-w2o5D9icr2ojx7PYYOeYPFgRzNeOBmBJTzAkqrjK7cnosg5SJicOCUdtm6HazxLv55-AsCAnsy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69645010</pqid></control><display><type>article</type><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</creator><creatorcontrib>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</creatorcontrib><description>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl8015413</identifier><identifier>PMID: 18767887</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biotechnology - methods ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Materials Testing ; Mechanics ; Microfluidics - methods ; Micromanipulation - instrumentation ; Microscopy, Atomic Force - methods ; Models, Statistical ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Nanotubes ; Optical Tweezers ; Physics ; Physics - methods ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Nano letters, 2008-10, Vol.8 (10), p.3211-3216</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</citedby><cites>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl8015413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl8015413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768230$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18767887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maragò, O. M</creatorcontrib><creatorcontrib>Jones, P. H</creatorcontrib><creatorcontrib>Bonaccorso, F</creatorcontrib><creatorcontrib>Scardaci, V</creatorcontrib><creatorcontrib>Gucciardi, P. G</creatorcontrib><creatorcontrib>Rozhin, A. G</creatorcontrib><creatorcontrib>Ferrari, A. C</creatorcontrib><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</description><subject>Biotechnology - methods</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Mechanics</subject><subject>Microfluidics - methods</subject><subject>Micromanipulation - instrumentation</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Models, Statistical</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes</subject><subject>Optical Tweezers</subject><subject>Physics</subject><subject>Physics - methods</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE9LwzAYh4MoTqcHv4D0ouCh-qZp08SbDKfCcAfnuaTpW-1o05q0jH17Iyvbxcv7j4ffCw8hVxTuKUT0wdQCaBJTdkTOaMIg5FJGx_tZxBNy7twaACRL4JRMqEh5KkR6Rh7n2PStwY0vwby1GoMPNK4yX8Gm6r-DZddXWtX1NlhZ1XVYBO_KtP2Qo7sgJ6WqHV6OfUo-58-r2Wu4WL68zZ4WoWIx60PJdCHiuChZjmmKCY9yGpWlVIhSMJCFhlj7jUYF11AIzkUJqWD-nKhSCzYlt7vczrY_A7o-ayqnsa6VwXZwGZc8ToCCB-92oLatcxbLrLNVo-w2o5D9icr2ojx7PYYOeYPFgRzNeOBmBJTzAkqrjK7cnosg5SJicOCUdtm6HazxLv55-AsCAnsy</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Maragò, O. M</creator><creator>Jones, P. H</creator><creator>Bonaccorso, F</creator><creator>Scardaci, V</creator><creator>Gucciardi, P. G</creator><creator>Rozhin, A. G</creator><creator>Ferrari, A. C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><author>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biotechnology - methods</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Mechanics</topic><topic>Microfluidics - methods</topic><topic>Micromanipulation - instrumentation</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Models, Statistical</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes</topic><topic>Optical Tweezers</topic><topic>Physics</topic><topic>Physics - methods</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maragò, O. M</creatorcontrib><creatorcontrib>Jones, P. H</creatorcontrib><creatorcontrib>Bonaccorso, F</creatorcontrib><creatorcontrib>Scardaci, V</creatorcontrib><creatorcontrib>Gucciardi, P. G</creatorcontrib><creatorcontrib>Rozhin, A. G</creatorcontrib><creatorcontrib>Ferrari, A. C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maragò, O. M</au><au>Jones, P. H</au><au>Bonaccorso, F</au><au>Scardaci, V</au><au>Gucciardi, P. G</au><au>Rozhin, A. G</au><au>Ferrari, A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtonewton Force Sensing with Optically Trapped Nanotubes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>8</volume><issue>10</issue><spage>3211</spage><epage>3216</epage><pages>3211-3216</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18767887</pmid><doi>10.1021/nl8015413</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2008-10, Vol.8 (10), p.3211-3216 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_69645010 |
source | MEDLINE; ACS Publications |
subjects | Biotechnology - methods Cross-disciplinary physics: materials science rheology Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Materials Testing Mechanics Microfluidics - methods Micromanipulation - instrumentation Microscopy, Atomic Force - methods Models, Statistical Nanoscale materials and structures: fabrication and characterization Nanotechnology - methods Nanotubes Optical Tweezers Physics Physics - methods Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing |
title | Femtonewton Force Sensing with Optically Trapped Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtonewton%20Force%20Sensing%20with%20Optically%20Trapped%20Nanotubes&rft.jtitle=Nano%20letters&rft.au=Marago%CC%80,%20O.%20M&rft.date=2008-10-01&rft.volume=8&rft.issue=10&rft.spage=3211&rft.epage=3216&rft.pages=3211-3216&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl8015413&rft_dat=%3Cproquest_cross%3E69645010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69645010&rft_id=info:pmid/18767887&rfr_iscdi=true |