Femtonewton Force Sensing with Optically Trapped Nanotubes

We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2008-10, Vol.8 (10), p.3211-3216
Hauptverfasser: Maragò, O. M, Jones, P. H, Bonaccorso, F, Scardaci, V, Gucciardi, P. G, Rozhin, A. G, Ferrari, A. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3216
container_issue 10
container_start_page 3211
container_title Nano letters
container_volume 8
creator Maragò, O. M
Jones, P. H
Bonaccorso, F
Scardaci, V
Gucciardi, P. G
Rozhin, A. G
Ferrari, A. C
description We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.
doi_str_mv 10.1021/nl8015413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69645010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69645010</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</originalsourceid><addsrcrecordid>eNptkE9LwzAYh4MoTqcHv4D0ouCh-qZp08SbDKfCcAfnuaTpW-1o05q0jH17Iyvbxcv7j4ffCw8hVxTuKUT0wdQCaBJTdkTOaMIg5FJGx_tZxBNy7twaACRL4JRMqEh5KkR6Rh7n2PStwY0vwby1GoMPNK4yX8Gm6r-DZddXWtX1NlhZ1XVYBO_KtP2Qo7sgJ6WqHV6OfUo-58-r2Wu4WL68zZ4WoWIx60PJdCHiuChZjmmKCY9yGpWlVIhSMJCFhlj7jUYF11AIzkUJqWD-nKhSCzYlt7vczrY_A7o-ayqnsa6VwXZwGZc8ToCCB-92oLatcxbLrLNVo-w2o5D9icr2ojx7PYYOeYPFgRzNeOBmBJTzAkqrjK7cnosg5SJicOCUdtm6HazxLv55-AsCAnsy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69645010</pqid></control><display><type>article</type><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</creator><creatorcontrib>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</creatorcontrib><description>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl8015413</identifier><identifier>PMID: 18767887</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biotechnology - methods ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Materials Testing ; Mechanics ; Microfluidics - methods ; Micromanipulation - instrumentation ; Microscopy, Atomic Force - methods ; Models, Statistical ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Nanotubes ; Optical Tweezers ; Physics ; Physics - methods ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Nano letters, 2008-10, Vol.8 (10), p.3211-3216</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</citedby><cites>FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl8015413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl8015413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768230$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18767887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maragò, O. M</creatorcontrib><creatorcontrib>Jones, P. H</creatorcontrib><creatorcontrib>Bonaccorso, F</creatorcontrib><creatorcontrib>Scardaci, V</creatorcontrib><creatorcontrib>Gucciardi, P. G</creatorcontrib><creatorcontrib>Rozhin, A. G</creatorcontrib><creatorcontrib>Ferrari, A. C</creatorcontrib><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</description><subject>Biotechnology - methods</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Mechanics</subject><subject>Microfluidics - methods</subject><subject>Micromanipulation - instrumentation</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Models, Statistical</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes</subject><subject>Optical Tweezers</subject><subject>Physics</subject><subject>Physics - methods</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE9LwzAYh4MoTqcHv4D0ouCh-qZp08SbDKfCcAfnuaTpW-1o05q0jH17Iyvbxcv7j4ffCw8hVxTuKUT0wdQCaBJTdkTOaMIg5FJGx_tZxBNy7twaACRL4JRMqEh5KkR6Rh7n2PStwY0vwby1GoMPNK4yX8Gm6r-DZddXWtX1NlhZ1XVYBO_KtP2Qo7sgJ6WqHV6OfUo-58-r2Wu4WL68zZ4WoWIx60PJdCHiuChZjmmKCY9yGpWlVIhSMJCFhlj7jUYF11AIzkUJqWD-nKhSCzYlt7vczrY_A7o-ayqnsa6VwXZwGZc8ToCCB-92oLatcxbLrLNVo-w2o5D9icr2ojx7PYYOeYPFgRzNeOBmBJTzAkqrjK7cnosg5SJicOCUdtm6HazxLv55-AsCAnsy</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Maragò, O. M</creator><creator>Jones, P. H</creator><creator>Bonaccorso, F</creator><creator>Scardaci, V</creator><creator>Gucciardi, P. G</creator><creator>Rozhin, A. G</creator><creator>Ferrari, A. C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>Femtonewton Force Sensing with Optically Trapped Nanotubes</title><author>Maragò, O. M ; Jones, P. H ; Bonaccorso, F ; Scardaci, V ; Gucciardi, P. G ; Rozhin, A. G ; Ferrari, A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-93cd844df3be77e562b12ff9aee98309dc04c9ae12d6c0d8668f0783c045afc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biotechnology - methods</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Mechanics</topic><topic>Microfluidics - methods</topic><topic>Micromanipulation - instrumentation</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Models, Statistical</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes</topic><topic>Optical Tweezers</topic><topic>Physics</topic><topic>Physics - methods</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maragò, O. M</creatorcontrib><creatorcontrib>Jones, P. H</creatorcontrib><creatorcontrib>Bonaccorso, F</creatorcontrib><creatorcontrib>Scardaci, V</creatorcontrib><creatorcontrib>Gucciardi, P. G</creatorcontrib><creatorcontrib>Rozhin, A. G</creatorcontrib><creatorcontrib>Ferrari, A. C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maragò, O. M</au><au>Jones, P. H</au><au>Bonaccorso, F</au><au>Scardaci, V</au><au>Gucciardi, P. G</au><au>Rozhin, A. G</au><au>Ferrari, A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtonewton Force Sensing with Optically Trapped Nanotubes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>8</volume><issue>10</issue><spage>3211</spage><epage>3216</epage><pages>3211-3216</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18767887</pmid><doi>10.1021/nl8015413</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2008-10, Vol.8 (10), p.3211-3216
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_69645010
source MEDLINE; ACS Publications
subjects Biotechnology - methods
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Materials Testing
Mechanics
Microfluidics - methods
Micromanipulation - instrumentation
Microscopy, Atomic Force - methods
Models, Statistical
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - methods
Nanotubes
Optical Tweezers
Physics
Physics - methods
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
title Femtonewton Force Sensing with Optically Trapped Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtonewton%20Force%20Sensing%20with%20Optically%20Trapped%20Nanotubes&rft.jtitle=Nano%20letters&rft.au=Marago%CC%80,%20O.%20M&rft.date=2008-10-01&rft.volume=8&rft.issue=10&rft.spage=3211&rft.epage=3216&rft.pages=3211-3216&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl8015413&rft_dat=%3Cproquest_cross%3E69645010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69645010&rft_id=info:pmid/18767887&rfr_iscdi=true