Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition

We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2008-10, Vol.8 (10), p.3278-3282
Hauptverfasser: Hung, Wei Hsuan, Hsu, I-Kai, Bushmaker, Adam, Kumar, Rajay, Theiss, Jesse, Cronin, Stephen B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3282
container_issue 10
container_start_page 3278
container_title Nano letters
container_volume 8
creator Hung, Wei Hsuan
Hsu, I-Kai
Bushmaker, Adam
Kumar, Rajay
Theiss, Jesse
Cronin, Stephen B
description We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.
doi_str_mv 10.1021/nl801666u
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69643713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69643713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMofqwe_AOSi4KHatK0aXPU9RMWFVGvZZpO2UqbrJkW8d_bZZf14mlmmId3mIexYykupIjlpWtzIbXWwxbbl6kSkTYm3t70ebLHDog-hRBGpWKX7ck8y6RSap-VMyAM_KYJaHus-H3w3_2c-5pPIZTeRdfjvuJP4Dz1YbD9EJB4-cNfWqDOO_6K5B24nk_n2DUWWv4BCz8m4sJT0zfeHbKdGlrCo3WdsPe727fpQzR7vn-cXs0iSITpo7qWiS0xy7JKpFbGUGuLtYpjYxRapaCsVK5NKqsEjU7TBEDZcUQrtKxGcsLOVrmL4L8GpL7oGrLYtuDQD1RooxO1fHvCzlegDZ4oYF0sQtNB-CmkKJZCi43QkT1Zhw5lh9UfuTY4AqdrAGj8vg7gbEMbLhaZzuMk_uPAUvHph-BGF_8c_AUbGIqN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69643713</pqid></control><display><type>article</type><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</creator><creatorcontrib>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</creatorcontrib><description>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl801666u</identifier><identifier>PMID: 18771333</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carbon - chemistry ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Exact sciences and technology ; Lasers ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission - methods ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanotechnology - methods ; Nanotubes - chemistry ; Nanotubes, Carbon - chemistry ; Physics ; Spectrum Analysis, Raman ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Surface Plasmon Resonance - methods ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; X-Rays</subject><ispartof>Nano letters, 2008-10, Vol.8 (10), p.3278-3282</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</citedby><cites>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl801666u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl801666u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768242$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18771333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Wei Hsuan</creatorcontrib><creatorcontrib>Hsu, I-Kai</creatorcontrib><creatorcontrib>Bushmaker, Adam</creatorcontrib><creatorcontrib>Kumar, Rajay</creatorcontrib><creatorcontrib>Theiss, Jesse</creatorcontrib><creatorcontrib>Cronin, Stephen B</creatorcontrib><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</description><subject>Carbon - chemistry</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Lasers</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physics</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>X-Rays</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LxDAQhoMofqwe_AOSi4KHatK0aXPU9RMWFVGvZZpO2UqbrJkW8d_bZZf14mlmmId3mIexYykupIjlpWtzIbXWwxbbl6kSkTYm3t70ebLHDog-hRBGpWKX7ck8y6RSap-VMyAM_KYJaHus-H3w3_2c-5pPIZTeRdfjvuJP4Dz1YbD9EJB4-cNfWqDOO_6K5B24nk_n2DUWWv4BCz8m4sJT0zfeHbKdGlrCo3WdsPe727fpQzR7vn-cXs0iSITpo7qWiS0xy7JKpFbGUGuLtYpjYxRapaCsVK5NKqsEjU7TBEDZcUQrtKxGcsLOVrmL4L8GpL7oGrLYtuDQD1RooxO1fHvCzlegDZ4oYF0sQtNB-CmkKJZCi43QkT1Zhw5lh9UfuTY4AqdrAGj8vg7gbEMbLhaZzuMk_uPAUvHph-BGF_8c_AUbGIqN</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Hung, Wei Hsuan</creator><creator>Hsu, I-Kai</creator><creator>Bushmaker, Adam</creator><creator>Kumar, Rajay</creator><creator>Theiss, Jesse</creator><creator>Cronin, Stephen B</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><author>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon - chemistry</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Lasers</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physics</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Wei Hsuan</creatorcontrib><creatorcontrib>Hsu, I-Kai</creatorcontrib><creatorcontrib>Bushmaker, Adam</creatorcontrib><creatorcontrib>Kumar, Rajay</creatorcontrib><creatorcontrib>Theiss, Jesse</creatorcontrib><creatorcontrib>Cronin, Stephen B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Wei Hsuan</au><au>Hsu, I-Kai</au><au>Bushmaker, Adam</au><au>Kumar, Rajay</au><au>Theiss, Jesse</au><au>Cronin, Stephen B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>8</volume><issue>10</issue><spage>3278</spage><epage>3282</epage><pages>3278-3282</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18771333</pmid><doi>10.1021/nl801666u</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2008-10, Vol.8 (10), p.3278-3282
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_69643713
source MEDLINE; ACS Publications
subjects Carbon - chemistry
Catalytic methods
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization - methods
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Equipment Design
Exact sciences and technology
Lasers
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Methods of nanofabrication
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission - methods
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanotechnology - methods
Nanotubes - chemistry
Nanotubes, Carbon - chemistry
Physics
Spectrum Analysis, Raman
Surface and interface electron states
Surface Plasmon Resonance - instrumentation
Surface Plasmon Resonance - methods
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Temperature
X-Rays
title Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Directed%20Growth%20of%20Carbon-Based%20Nanostructures%20by%20Plasmon%20Resonant%20Chemical%20Vapor%20Deposition&rft.jtitle=Nano%20letters&rft.au=Hung,%20Wei%20Hsuan&rft.date=2008-10-01&rft.volume=8&rft.issue=10&rft.spage=3278&rft.epage=3282&rft.pages=3278-3282&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl801666u&rft_dat=%3Cproquest_cross%3E69643713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69643713&rft_id=info:pmid/18771333&rfr_iscdi=true