Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition
We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required t...
Gespeichert in:
Veröffentlicht in: | Nano letters 2008-10, Vol.8 (10), p.3278-3282 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3282 |
---|---|
container_issue | 10 |
container_start_page | 3278 |
container_title | Nano letters |
container_volume | 8 |
creator | Hung, Wei Hsuan Hsu, I-Kai Bushmaker, Adam Kumar, Rajay Theiss, Jesse Cronin, Stephen B |
description | We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature. |
doi_str_mv | 10.1021/nl801666u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69643713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69643713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMofqwe_AOSi4KHatK0aXPU9RMWFVGvZZpO2UqbrJkW8d_bZZf14mlmmId3mIexYykupIjlpWtzIbXWwxbbl6kSkTYm3t70ebLHDog-hRBGpWKX7ck8y6RSap-VMyAM_KYJaHus-H3w3_2c-5pPIZTeRdfjvuJP4Dz1YbD9EJB4-cNfWqDOO_6K5B24nk_n2DUWWv4BCz8m4sJT0zfeHbKdGlrCo3WdsPe727fpQzR7vn-cXs0iSITpo7qWiS0xy7JKpFbGUGuLtYpjYxRapaCsVK5NKqsEjU7TBEDZcUQrtKxGcsLOVrmL4L8GpL7oGrLYtuDQD1RooxO1fHvCzlegDZ4oYF0sQtNB-CmkKJZCi43QkT1Zhw5lh9UfuTY4AqdrAGj8vg7gbEMbLhaZzuMk_uPAUvHph-BGF_8c_AUbGIqN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69643713</pqid></control><display><type>article</type><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</creator><creatorcontrib>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</creatorcontrib><description>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl801666u</identifier><identifier>PMID: 18771333</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carbon - chemistry ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Exact sciences and technology ; Lasers ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission - methods ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanotechnology - methods ; Nanotubes - chemistry ; Nanotubes, Carbon - chemistry ; Physics ; Spectrum Analysis, Raman ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Surface Plasmon Resonance - methods ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; X-Rays</subject><ispartof>Nano letters, 2008-10, Vol.8 (10), p.3278-3282</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</citedby><cites>FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl801666u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl801666u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768242$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18771333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Wei Hsuan</creatorcontrib><creatorcontrib>Hsu, I-Kai</creatorcontrib><creatorcontrib>Bushmaker, Adam</creatorcontrib><creatorcontrib>Kumar, Rajay</creatorcontrib><creatorcontrib>Theiss, Jesse</creatorcontrib><creatorcontrib>Cronin, Stephen B</creatorcontrib><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</description><subject>Carbon - chemistry</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Lasers</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physics</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>X-Rays</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LxDAQhoMofqwe_AOSi4KHatK0aXPU9RMWFVGvZZpO2UqbrJkW8d_bZZf14mlmmId3mIexYykupIjlpWtzIbXWwxbbl6kSkTYm3t70ebLHDog-hRBGpWKX7ck8y6RSap-VMyAM_KYJaHus-H3w3_2c-5pPIZTeRdfjvuJP4Dz1YbD9EJB4-cNfWqDOO_6K5B24nk_n2DUWWv4BCz8m4sJT0zfeHbKdGlrCo3WdsPe727fpQzR7vn-cXs0iSITpo7qWiS0xy7JKpFbGUGuLtYpjYxRapaCsVK5NKqsEjU7TBEDZcUQrtKxGcsLOVrmL4L8GpL7oGrLYtuDQD1RooxO1fHvCzlegDZ4oYF0sQtNB-CmkKJZCi43QkT1Zhw5lh9UfuTY4AqdrAGj8vg7gbEMbLhaZzuMk_uPAUvHph-BGF_8c_AUbGIqN</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Hung, Wei Hsuan</creator><creator>Hsu, I-Kai</creator><creator>Bushmaker, Adam</creator><creator>Kumar, Rajay</creator><creator>Theiss, Jesse</creator><creator>Cronin, Stephen B</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</title><author>Hung, Wei Hsuan ; Hsu, I-Kai ; Bushmaker, Adam ; Kumar, Rajay ; Theiss, Jesse ; Cronin, Stephen B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-ff14cbe777d05c12af6cef322993ec33abd386951d4e96554aa3c951ec061def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon - chemistry</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Lasers</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physics</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Wei Hsuan</creatorcontrib><creatorcontrib>Hsu, I-Kai</creatorcontrib><creatorcontrib>Bushmaker, Adam</creatorcontrib><creatorcontrib>Kumar, Rajay</creatorcontrib><creatorcontrib>Theiss, Jesse</creatorcontrib><creatorcontrib>Cronin, Stephen B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Wei Hsuan</au><au>Hsu, I-Kai</au><au>Bushmaker, Adam</au><au>Kumar, Rajay</au><au>Theiss, Jesse</au><au>Cronin, Stephen B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>8</volume><issue>10</issue><spage>3278</spage><epage>3282</epage><pages>3278-3282</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18771333</pmid><doi>10.1021/nl801666u</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2008-10, Vol.8 (10), p.3278-3282 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_69643713 |
source | MEDLINE; ACS Publications |
subjects | Carbon - chemistry Catalytic methods Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallization - methods Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Equipment Design Exact sciences and technology Lasers Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Methods of nanofabrication Microscopy, Electron, Scanning Microscopy, Electron, Transmission - methods Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructures - chemistry Nanotechnology - methods Nanotubes - chemistry Nanotubes, Carbon - chemistry Physics Spectrum Analysis, Raman Surface and interface electron states Surface Plasmon Resonance - instrumentation Surface Plasmon Resonance - methods Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Temperature X-Rays |
title | Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Directed%20Growth%20of%20Carbon-Based%20Nanostructures%20by%20Plasmon%20Resonant%20Chemical%20Vapor%20Deposition&rft.jtitle=Nano%20letters&rft.au=Hung,%20Wei%20Hsuan&rft.date=2008-10-01&rft.volume=8&rft.issue=10&rft.spage=3278&rft.epage=3282&rft.pages=3278-3282&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl801666u&rft_dat=%3Cproquest_cross%3E69643713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69643713&rft_id=info:pmid/18771333&rfr_iscdi=true |