Protein tertiary structure prediction using a branch and bound algorithm

We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1999-04, Vol.35 (1), p.41-57
Hauptverfasser: Eyrich, Volker A., Standley, Daron M., Felts, Anthony K., Friesner, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 41
container_title Proteins, structure, function, and bioinformatics
container_volume 35
creator Eyrich, Volker A.
Standley, Daron M.
Felts, Anthony K.
Friesner, Richard A.
description We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is based on the αBB method developed by Floudas and coworkers (Costas and Floudas, J Chem Phys 1994;100:1247–1261), uses a reduced model of the protein and is implemented in both distance and dihedral angle space, enabling a side‐by‐side comparison of methodologies. For a set of eight small proteins, representing the three basic types—all α, all β, and mixed α/β—the algorithm locates low‐energy native‐like structures (less than 6Å root mean square deviation from the native coordinates) starting from an unfolded state. Serial and parallel implementations of this methodology are discussed. Proteins 1999;35:41–57. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1097-0134(19990401)35:1<41::AID-PROT5>3.0.CO;2-N
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69637488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69637488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3975-875225267eb82a43215777482ef83481a20d6507bc13cec62ba40b0948c05aa23</originalsourceid><addsrcrecordid>eNqFkF1v0zAUhi0EYmXwF1Cu0HaRcvwV2wVNGoF1laZ2sMEujxzX3TzapNiJYP-elIwJCSRufCTrPc9rP4QcURhTAPb64GJWzg4pGJUD5eKAGmNAAD3kckLfCjqZHM_e5-efFpfyiI9hXC7esHz-iIweVh6TEWitci613CPPUroFgMLw4inZ6ysMMC1H5PQ8Nq0Pddb62AYb77LUxs61XfTZNvplcG1o6qxLob7ObFZFW7ubzNbLrGq6_rTr6yaG9mbznDxZ2XXyL-7nPvl88uGyPM3PFtNZeXyWO26UzLWSjElWKF9pZgVnVCqlhGZ-pbnQ1DJYFhJU5Sh33hWssgIqMEI7kNYyvk9eDdxtbL51PrW4Ccn59drWvukSFqbgPU_3wS9D0MUmpehXuI1h0_8QKeDOMeLOMe6E4U4Y_naMXCJFQRF7x_jLMXIELBfIcN6DX96_oKs2fvkHdpDaB66GwPew9nd_1f6v9V-lw0VPzgdySK3_8UC28SsWiiuJV_MpfhTTkwuj3qHiPwEQwaXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69637488</pqid></control><display><type>article</type><title>Protein tertiary structure prediction using a branch and bound algorithm</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Eyrich, Volker A. ; Standley, Daron M. ; Felts, Anthony K. ; Friesner, Richard A.</creator><creatorcontrib>Eyrich, Volker A. ; Standley, Daron M. ; Felts, Anthony K. ; Friesner, Richard A.</creatorcontrib><description>We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is based on the αBB method developed by Floudas and coworkers (Costas and Floudas, J Chem Phys 1994;100:1247–1261), uses a reduced model of the protein and is implemented in both distance and dihedral angle space, enabling a side‐by‐side comparison of methodologies. For a set of eight small proteins, representing the three basic types—all α, all β, and mixed α/β—the algorithm locates low‐energy native‐like structures (less than 6Å root mean square deviation from the native coordinates) starting from an unfolded state. Serial and parallel implementations of this methodology are discussed. Proteins 1999;35:41–57. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/(SICI)1097-0134(19990401)35:1&lt;41::AID-PROT5&gt;3.0.CO;2-N</identifier><identifier>PMID: 10090285</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Computer Simulation ; global optimization ; Models, Chemical ; Monte Carlo Method ; parallel processing ; Protein Folding ; Protein Structure, Tertiary ; reduced model ; simulated annealing</subject><ispartof>Proteins, structure, function, and bioinformatics, 1999-04, Vol.35 (1), p.41-57</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3975-875225267eb82a43215777482ef83481a20d6507bc13cec62ba40b0948c05aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0134%2819990401%2935%3A1%3C41%3A%3AAID-PROT5%3E3.0.CO%3B2-N$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0134%2819990401%2935%3A1%3C41%3A%3AAID-PROT5%3E3.0.CO%3B2-N$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10090285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyrich, Volker A.</creatorcontrib><creatorcontrib>Standley, Daron M.</creatorcontrib><creatorcontrib>Felts, Anthony K.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><title>Protein tertiary structure prediction using a branch and bound algorithm</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is based on the αBB method developed by Floudas and coworkers (Costas and Floudas, J Chem Phys 1994;100:1247–1261), uses a reduced model of the protein and is implemented in both distance and dihedral angle space, enabling a side‐by‐side comparison of methodologies. For a set of eight small proteins, representing the three basic types—all α, all β, and mixed α/β—the algorithm locates low‐energy native‐like structures (less than 6Å root mean square deviation from the native coordinates) starting from an unfolded state. Serial and parallel implementations of this methodology are discussed. Proteins 1999;35:41–57. © 1999 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>global optimization</subject><subject>Models, Chemical</subject><subject>Monte Carlo Method</subject><subject>parallel processing</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>reduced model</subject><subject>simulated annealing</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1v0zAUhi0EYmXwF1Cu0HaRcvwV2wVNGoF1laZ2sMEujxzX3TzapNiJYP-elIwJCSRufCTrPc9rP4QcURhTAPb64GJWzg4pGJUD5eKAGmNAAD3kckLfCjqZHM_e5-efFpfyiI9hXC7esHz-iIweVh6TEWitci613CPPUroFgMLw4inZ6ysMMC1H5PQ8Nq0Pddb62AYb77LUxs61XfTZNvplcG1o6qxLob7ObFZFW7ubzNbLrGq6_rTr6yaG9mbznDxZ2XXyL-7nPvl88uGyPM3PFtNZeXyWO26UzLWSjElWKF9pZgVnVCqlhGZ-pbnQ1DJYFhJU5Sh33hWssgIqMEI7kNYyvk9eDdxtbL51PrW4Ccn59drWvukSFqbgPU_3wS9D0MUmpehXuI1h0_8QKeDOMeLOMe6E4U4Y_naMXCJFQRF7x_jLMXIELBfIcN6DX96_oKs2fvkHdpDaB66GwPew9nd_1f6v9V-lw0VPzgdySK3_8UC28SsWiiuJV_MpfhTTkwuj3qHiPwEQwaXo</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Eyrich, Volker A.</creator><creator>Standley, Daron M.</creator><creator>Felts, Anthony K.</creator><creator>Friesner, Richard A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990401</creationdate><title>Protein tertiary structure prediction using a branch and bound algorithm</title><author>Eyrich, Volker A. ; Standley, Daron M. ; Felts, Anthony K. ; Friesner, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3975-875225267eb82a43215777482ef83481a20d6507bc13cec62ba40b0948c05aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>global optimization</topic><topic>Models, Chemical</topic><topic>Monte Carlo Method</topic><topic>parallel processing</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>reduced model</topic><topic>simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyrich, Volker A.</creatorcontrib><creatorcontrib>Standley, Daron M.</creatorcontrib><creatorcontrib>Felts, Anthony K.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyrich, Volker A.</au><au>Standley, Daron M.</au><au>Felts, Anthony K.</au><au>Friesner, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein tertiary structure prediction using a branch and bound algorithm</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>35</volume><issue>1</issue><spage>41</spage><epage>57</epage><pages>41-57</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is based on the αBB method developed by Floudas and coworkers (Costas and Floudas, J Chem Phys 1994;100:1247–1261), uses a reduced model of the protein and is implemented in both distance and dihedral angle space, enabling a side‐by‐side comparison of methodologies. For a set of eight small proteins, representing the three basic types—all α, all β, and mixed α/β—the algorithm locates low‐energy native‐like structures (less than 6Å root mean square deviation from the native coordinates) starting from an unfolded state. Serial and parallel implementations of this methodology are discussed. Proteins 1999;35:41–57. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10090285</pmid><doi>10.1002/(SICI)1097-0134(19990401)35:1&lt;41::AID-PROT5&gt;3.0.CO;2-N</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 1999-04, Vol.35 (1), p.41-57
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_69637488
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Computer Simulation
global optimization
Models, Chemical
Monte Carlo Method
parallel processing
Protein Folding
Protein Structure, Tertiary
reduced model
simulated annealing
title Protein tertiary structure prediction using a branch and bound algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20tertiary%20structure%20prediction%20using%20a%20branch%20and%20bound%20algorithm&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Eyrich,%20Volker%20A.&rft.date=1999-04-01&rft.volume=35&rft.issue=1&rft.spage=41&rft.epage=57&rft.pages=41-57&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/(SICI)1097-0134(19990401)35:1%3C41::AID-PROT5%3E3.0.CO;2-N&rft_dat=%3Cproquest_cross%3E69637488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69637488&rft_id=info:pmid/10090285&rfr_iscdi=true