Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis
Various molecular mechanisms have been suggested to be involved in dexamethasone induced thymocyte apoptosis. In this study we show that pharmacological inhibition of cytoplasmic PLA2 in mouse thymocytes for 18 h with arachidonyl trifluoromethyl ketone (AACOCF3) (10 μM) and palmitoyl trifluoromethyl...
Gespeichert in:
Veröffentlicht in: | International journal of immunopathology and pharmacology 2008-07, Vol.21 (3), p.539-551 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 539 |
container_title | International journal of immunopathology and pharmacology |
container_volume | 21 |
creator | Cinque, B. Fanini, D. Di Marzio, L. Palumbo, P. La Torre, C. Donato, V. Velardi, E. Bruscoli, S. Riccardi, C. Cifone, M.G. |
description | Various molecular mechanisms have been suggested to be involved in dexamethasone induced thymocyte apoptosis. In this study we show that pharmacological inhibition of cytoplasmic PLA2 in mouse thymocytes for 18 h with arachidonyl trifluoromethyl ketone (AACOCF3) (10 μM) and palmitoyl trifluoromethyl ketone (PACOCF3) (10 μM) induced a drastic increase of thymocyte apoptosis comparable to that observed following Dex (10−7 M) treatment, while inhibition of secretory PLA2 with p-bromophenacyl bromide (pBPB) (20 μM) did not. AACOCF3-induced thymocyte apoptosis, similarly to Dex-induced thymocyte apoptosis, was eliminated by cell pre-treatment with the PI-PLCβ inhibitor, U73122, but not by the PC-PLC inhibitor D609. These observations were corroborated by the ability of AACOCF3, like Dex, to induce a rapid and transient increase in DAG generation. In addition, AACOCF3-induced apoptosis involved the activation of the acidic sphingomyelinase (aSMase) but not of the neutral sphingomyelinase (nSMase), as evaluated by measurements of enzyme activity in cell extracts following thymocyte exposure to AACOCF3 and by the ability of monensin to inhibit AACOCF3-induced thymocyte apoptosis. In addition, the AACOCF3 apoptotic effect resulted in an early increase of ceramide levels. AACOCF3-induced thymocyte apoptosis involved the activation of caspase 3, and cell pre-treatment with a caspase 3 inhibitor prevented AACOCF3-induced apoptosis. These observations suggest that cPLA2 inhibition may have a role in Dex-induced thymocyte apoptosis and highlight the importance of cPLA2 activity in thymocyte survival. |
doi_str_mv | 10.1177/039463200802100307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_miscellaneous_69628774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_039463200802100307</sage_id><sourcerecordid>69628774</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2087-a8fac22ec4e69e47322129c78dc5e89f63dc720962c9f95687139d26c306b0e13</originalsourceid><addsrcrecordid>eNpl0D1PwzAQBmALgWhV-gcYUCa20LOd-GOsylekSDCUOXKdC02V2KFOKvrvSUWZmG557tXdS8gthQdKpVwA14ngDEABowAc5AWZMkhVLLlKLsn0BOKTmJB5CDsAoMCTVNFrMqFKcaoZnZI8cwffHLBF10e-iux7vmRR5rb1pu5r76LaRY_4bVrstyZ4h3HmysFiGa23x9bbY4_RsvNd70MdbshVZZqA8_OckY_np_XqNc7fXrLVMo87BkrGRlXGMoY2QaExkZwxyrSVqrQpKl0JXlrJQAtmdaVToSTlumTCchAbQMpn5P43t9v7rwFDX7R1sNg0xqEfQiHGVSVlMsK7Mxw2LZZFt69bsz8Wf_-PYPELgvnEYueHvRsPLygUp5KL_yXzH8gJajA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69628774</pqid></control><display><type>article</type><title>Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis</title><source>Sage Journals GOLD Open Access 2024</source><creator>Cinque, B. ; Fanini, D. ; Di Marzio, L. ; Palumbo, P. ; La Torre, C. ; Donato, V. ; Velardi, E. ; Bruscoli, S. ; Riccardi, C. ; Cifone, M.G.</creator><creatorcontrib>Cinque, B. ; Fanini, D. ; Di Marzio, L. ; Palumbo, P. ; La Torre, C. ; Donato, V. ; Velardi, E. ; Bruscoli, S. ; Riccardi, C. ; Cifone, M.G.</creatorcontrib><description>Various molecular mechanisms have been suggested to be involved in dexamethasone induced thymocyte apoptosis. In this study we show that pharmacological inhibition of cytoplasmic PLA2 in mouse thymocytes for 18 h with arachidonyl trifluoromethyl ketone (AACOCF3) (10 μM) and palmitoyl trifluoromethyl ketone (PACOCF3) (10 μM) induced a drastic increase of thymocyte apoptosis comparable to that observed following Dex (10−7 M) treatment, while inhibition of secretory PLA2 with p-bromophenacyl bromide (pBPB) (20 μM) did not. AACOCF3-induced thymocyte apoptosis, similarly to Dex-induced thymocyte apoptosis, was eliminated by cell pre-treatment with the PI-PLCβ inhibitor, U73122, but not by the PC-PLC inhibitor D609. These observations were corroborated by the ability of AACOCF3, like Dex, to induce a rapid and transient increase in DAG generation. In addition, AACOCF3-induced apoptosis involved the activation of the acidic sphingomyelinase (aSMase) but not of the neutral sphingomyelinase (nSMase), as evaluated by measurements of enzyme activity in cell extracts following thymocyte exposure to AACOCF3 and by the ability of monensin to inhibit AACOCF3-induced thymocyte apoptosis. In addition, the AACOCF3 apoptotic effect resulted in an early increase of ceramide levels. AACOCF3-induced thymocyte apoptosis involved the activation of caspase 3, and cell pre-treatment with a caspase 3 inhibitor prevented AACOCF3-induced apoptosis. These observations suggest that cPLA2 inhibition may have a role in Dex-induced thymocyte apoptosis and highlight the importance of cPLA2 activity in thymocyte survival.</description><identifier>ISSN: 0394-6320</identifier><identifier>EISSN: 2058-7384</identifier><identifier>DOI: 10.1177/039463200802100307</identifier><identifier>PMID: 18831921</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Apoptosis - drug effects ; Arachidonic Acid - secretion ; Arachidonic Acids - pharmacology ; Caspase 3 - metabolism ; Ceramides - metabolism ; Cytoplasm - enzymology ; Dexamethasone - pharmacology ; Male ; Mice ; Mice, Inbred C3H ; Mifepristone - pharmacology ; Phosphoinositide Phospholipase C - metabolism ; Phospholipase A2 Inhibitors ; Phospholipases A2 - physiology ; T-Lymphocytes - drug effects</subject><ispartof>International journal of immunopathology and pharmacology, 2008-07, Vol.21 (3), p.539-551</ispartof><rights>2008 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/039463200802100307$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/039463200802100307$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21966,27853,27924,27925,44945,45333</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1177/039463200802100307?utm_source=summon&utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18831921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cinque, B.</creatorcontrib><creatorcontrib>Fanini, D.</creatorcontrib><creatorcontrib>Di Marzio, L.</creatorcontrib><creatorcontrib>Palumbo, P.</creatorcontrib><creatorcontrib>La Torre, C.</creatorcontrib><creatorcontrib>Donato, V.</creatorcontrib><creatorcontrib>Velardi, E.</creatorcontrib><creatorcontrib>Bruscoli, S.</creatorcontrib><creatorcontrib>Riccardi, C.</creatorcontrib><creatorcontrib>Cifone, M.G.</creatorcontrib><title>Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis</title><title>International journal of immunopathology and pharmacology</title><addtitle>Int J Immunopathol Pharmacol</addtitle><description>Various molecular mechanisms have been suggested to be involved in dexamethasone induced thymocyte apoptosis. In this study we show that pharmacological inhibition of cytoplasmic PLA2 in mouse thymocytes for 18 h with arachidonyl trifluoromethyl ketone (AACOCF3) (10 μM) and palmitoyl trifluoromethyl ketone (PACOCF3) (10 μM) induced a drastic increase of thymocyte apoptosis comparable to that observed following Dex (10−7 M) treatment, while inhibition of secretory PLA2 with p-bromophenacyl bromide (pBPB) (20 μM) did not. AACOCF3-induced thymocyte apoptosis, similarly to Dex-induced thymocyte apoptosis, was eliminated by cell pre-treatment with the PI-PLCβ inhibitor, U73122, but not by the PC-PLC inhibitor D609. These observations were corroborated by the ability of AACOCF3, like Dex, to induce a rapid and transient increase in DAG generation. In addition, AACOCF3-induced apoptosis involved the activation of the acidic sphingomyelinase (aSMase) but not of the neutral sphingomyelinase (nSMase), as evaluated by measurements of enzyme activity in cell extracts following thymocyte exposure to AACOCF3 and by the ability of monensin to inhibit AACOCF3-induced thymocyte apoptosis. In addition, the AACOCF3 apoptotic effect resulted in an early increase of ceramide levels. AACOCF3-induced thymocyte apoptosis involved the activation of caspase 3, and cell pre-treatment with a caspase 3 inhibitor prevented AACOCF3-induced apoptosis. These observations suggest that cPLA2 inhibition may have a role in Dex-induced thymocyte apoptosis and highlight the importance of cPLA2 activity in thymocyte survival.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Arachidonic Acid - secretion</subject><subject>Arachidonic Acids - pharmacology</subject><subject>Caspase 3 - metabolism</subject><subject>Ceramides - metabolism</subject><subject>Cytoplasm - enzymology</subject><subject>Dexamethasone - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Mifepristone - pharmacology</subject><subject>Phosphoinositide Phospholipase C - metabolism</subject><subject>Phospholipase A2 Inhibitors</subject><subject>Phospholipases A2 - physiology</subject><subject>T-Lymphocytes - drug effects</subject><issn>0394-6320</issn><issn>2058-7384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0D1PwzAQBmALgWhV-gcYUCa20LOd-GOsylekSDCUOXKdC02V2KFOKvrvSUWZmG557tXdS8gthQdKpVwA14ngDEABowAc5AWZMkhVLLlKLsn0BOKTmJB5CDsAoMCTVNFrMqFKcaoZnZI8cwffHLBF10e-iux7vmRR5rb1pu5r76LaRY_4bVrstyZ4h3HmysFiGa23x9bbY4_RsvNd70MdbshVZZqA8_OckY_np_XqNc7fXrLVMo87BkrGRlXGMoY2QaExkZwxyrSVqrQpKl0JXlrJQAtmdaVToSTlumTCchAbQMpn5P43t9v7rwFDX7R1sNg0xqEfQiHGVSVlMsK7Mxw2LZZFt69bsz8Wf_-PYPELgvnEYueHvRsPLygUp5KL_yXzH8gJajA</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Cinque, B.</creator><creator>Fanini, D.</creator><creator>Di Marzio, L.</creator><creator>Palumbo, P.</creator><creator>La Torre, C.</creator><creator>Donato, V.</creator><creator>Velardi, E.</creator><creator>Bruscoli, S.</creator><creator>Riccardi, C.</creator><creator>Cifone, M.G.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200807</creationdate><title>Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis</title><author>Cinque, B. ; Fanini, D. ; Di Marzio, L. ; Palumbo, P. ; La Torre, C. ; Donato, V. ; Velardi, E. ; Bruscoli, S. ; Riccardi, C. ; Cifone, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2087-a8fac22ec4e69e47322129c78dc5e89f63dc720962c9f95687139d26c306b0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Arachidonic Acid - secretion</topic><topic>Arachidonic Acids - pharmacology</topic><topic>Caspase 3 - metabolism</topic><topic>Ceramides - metabolism</topic><topic>Cytoplasm - enzymology</topic><topic>Dexamethasone - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Mifepristone - pharmacology</topic><topic>Phosphoinositide Phospholipase C - metabolism</topic><topic>Phospholipase A2 Inhibitors</topic><topic>Phospholipases A2 - physiology</topic><topic>T-Lymphocytes - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cinque, B.</creatorcontrib><creatorcontrib>Fanini, D.</creatorcontrib><creatorcontrib>Di Marzio, L.</creatorcontrib><creatorcontrib>Palumbo, P.</creatorcontrib><creatorcontrib>La Torre, C.</creatorcontrib><creatorcontrib>Donato, V.</creatorcontrib><creatorcontrib>Velardi, E.</creatorcontrib><creatorcontrib>Bruscoli, S.</creatorcontrib><creatorcontrib>Riccardi, C.</creatorcontrib><creatorcontrib>Cifone, M.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of immunopathology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cinque, B.</au><au>Fanini, D.</au><au>Di Marzio, L.</au><au>Palumbo, P.</au><au>La Torre, C.</au><au>Donato, V.</au><au>Velardi, E.</au><au>Bruscoli, S.</au><au>Riccardi, C.</au><au>Cifone, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis</atitle><jtitle>International journal of immunopathology and pharmacology</jtitle><addtitle>Int J Immunopathol Pharmacol</addtitle><date>2008-07</date><risdate>2008</risdate><volume>21</volume><issue>3</issue><spage>539</spage><epage>551</epage><pages>539-551</pages><issn>0394-6320</issn><eissn>2058-7384</eissn><abstract>Various molecular mechanisms have been suggested to be involved in dexamethasone induced thymocyte apoptosis. In this study we show that pharmacological inhibition of cytoplasmic PLA2 in mouse thymocytes for 18 h with arachidonyl trifluoromethyl ketone (AACOCF3) (10 μM) and palmitoyl trifluoromethyl ketone (PACOCF3) (10 μM) induced a drastic increase of thymocyte apoptosis comparable to that observed following Dex (10−7 M) treatment, while inhibition of secretory PLA2 with p-bromophenacyl bromide (pBPB) (20 μM) did not. AACOCF3-induced thymocyte apoptosis, similarly to Dex-induced thymocyte apoptosis, was eliminated by cell pre-treatment with the PI-PLCβ inhibitor, U73122, but not by the PC-PLC inhibitor D609. These observations were corroborated by the ability of AACOCF3, like Dex, to induce a rapid and transient increase in DAG generation. In addition, AACOCF3-induced apoptosis involved the activation of the acidic sphingomyelinase (aSMase) but not of the neutral sphingomyelinase (nSMase), as evaluated by measurements of enzyme activity in cell extracts following thymocyte exposure to AACOCF3 and by the ability of monensin to inhibit AACOCF3-induced thymocyte apoptosis. In addition, the AACOCF3 apoptotic effect resulted in an early increase of ceramide levels. AACOCF3-induced thymocyte apoptosis involved the activation of caspase 3, and cell pre-treatment with a caspase 3 inhibitor prevented AACOCF3-induced apoptosis. These observations suggest that cPLA2 inhibition may have a role in Dex-induced thymocyte apoptosis and highlight the importance of cPLA2 activity in thymocyte survival.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>18831921</pmid><doi>10.1177/039463200802100307</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0394-6320 |
ispartof | International journal of immunopathology and pharmacology, 2008-07, Vol.21 (3), p.539-551 |
issn | 0394-6320 2058-7384 |
language | eng |
recordid | cdi_proquest_miscellaneous_69628774 |
source | Sage Journals GOLD Open Access 2024 |
subjects | Animals Apoptosis - drug effects Arachidonic Acid - secretion Arachidonic Acids - pharmacology Caspase 3 - metabolism Ceramides - metabolism Cytoplasm - enzymology Dexamethasone - pharmacology Male Mice Mice, Inbred C3H Mifepristone - pharmacology Phosphoinositide Phospholipase C - metabolism Phospholipase A2 Inhibitors Phospholipases A2 - physiology T-Lymphocytes - drug effects |
title | Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20cPLA2%20Inhibition%20in%20Dexamethasone-Induced%20Thymocyte%20Apoptosis&rft.jtitle=International%20journal%20of%20immunopathology%20and%20pharmacology&rft.au=Cinque,%20B.&rft.date=2008-07&rft.volume=21&rft.issue=3&rft.spage=539&rft.epage=551&rft.pages=539-551&rft.issn=0394-6320&rft.eissn=2058-7384&rft_id=info:doi/10.1177/039463200802100307&rft_dat=%3Cproquest_AFRWT%3E69628774%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69628774&rft_id=info:pmid/18831921&rft_sage_id=10.1177_039463200802100307&rfr_iscdi=true |