Evaluation and improvement of multiple sequence methods for protein secondary structure prediction

A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1999-03, Vol.34 (4), p.508-519
Hauptverfasser: Cuff, James A., Barton, Geoffrey J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 4
container_start_page 508
container_title Proteins, structure, function, and bioinformatics
container_volume 34
creator Cuff, James A.
Barton, Geoffrey J.
description A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396‐protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8‐ to 3‐state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross‐validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/. Proteins 1999;34:508–519. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69626526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69626526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5550-ff7e2fa35138657f76dcbc44b8da26f57a0b33343638ad1aa4915cb0ceb28f513</originalsourceid><addsrcrecordid>eNqFkFtv1DAQhS0EokvhLyA_ofYhix1fkiwIUYXSrmhZKEUgXkaOM1YDuSxxUui_x1GWCgkknnyZM-ccfYS85GzJGYufHnxY5-tDzrIkYlzIA55lGROMHwq5ks8VS1ero_Wr6N3F5pKzF2LJlvnmWRzJO2Rxu3SXLFiaJpFQqdojD7z_yhjTmdD3yV4ISXmmxYIUx9emHs1QdS01bUmrZtt319hgO9DO0Wash2pbI_X4fcTWIm1wuOpKT13X0yAdsGrD0HZtafob6od-tMPYY5hhWdnJ9yG550zt8dHu3CcfXx9f5qfR2eZknR-dRVYpxSLnEoydEYqLVKvEJbq0hZWySEsTa6cSwwohhBRapKbkxsiMK1swi0WcurC1T57MvqFWKOsHaCpvsa5Ni93oQWc61irWQfh5Ftq-875HB9u-akJ94Awm_gATf5hQwoQSfvOHcJcQ-AME_jDzBwEM8g3EIIP1412HsWiw_MN4Bh4EX2bBj6rGm7-C_5v7z9jdTzCPZvPKD_jz1tz030AnIlHw6e0JnJ--zy7O34SH-AV7pLNd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69626526</pqid></control><display><type>article</type><title>Evaluation and improvement of multiple sequence methods for protein secondary structure prediction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cuff, James A. ; Barton, Geoffrey J.</creator><creatorcontrib>Cuff, James A. ; Barton, Geoffrey J.</creatorcontrib><description>A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396‐protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8‐ to 3‐state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross‐validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/. Proteins 1999;34:508–519. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/(SICI)1097-0134(19990301)34:4&lt;508::AID-PROT10&gt;3.0.CO;2-4</identifier><identifier>PMID: 10081963</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; benchmarks ; combination of methods ; Computer Simulation ; Databases, Factual ; Models, Statistical ; protein ; Protein Structure, Secondary ; Reproducibility of Results ; secondary structure prediction ; Sequence Alignment</subject><ispartof>Proteins, structure, function, and bioinformatics, 1999-03, Vol.34 (4), p.508-519</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5550-ff7e2fa35138657f76dcbc44b8da26f57a0b33343638ad1aa4915cb0ceb28f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0134%2819990301%2934%3A4%3C508%3A%3AAID-PROT10%3E3.0.CO%3B2-4$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0134%2819990301%2934%3A4%3C508%3A%3AAID-PROT10%3E3.0.CO%3B2-4$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10081963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuff, James A.</creatorcontrib><creatorcontrib>Barton, Geoffrey J.</creatorcontrib><title>Evaluation and improvement of multiple sequence methods for protein secondary structure prediction</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396‐protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8‐ to 3‐state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross‐validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/. Proteins 1999;34:508–519. © 1999 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>benchmarks</subject><subject>combination of methods</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>Models, Statistical</subject><subject>protein</subject><subject>Protein Structure, Secondary</subject><subject>Reproducibility of Results</subject><subject>secondary structure prediction</subject><subject>Sequence Alignment</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtv1DAQhS0EokvhLyA_ofYhix1fkiwIUYXSrmhZKEUgXkaOM1YDuSxxUui_x1GWCgkknnyZM-ccfYS85GzJGYufHnxY5-tDzrIkYlzIA55lGROMHwq5ks8VS1ero_Wr6N3F5pKzF2LJlvnmWRzJO2Rxu3SXLFiaJpFQqdojD7z_yhjTmdD3yV4ISXmmxYIUx9emHs1QdS01bUmrZtt319hgO9DO0Wash2pbI_X4fcTWIm1wuOpKT13X0yAdsGrD0HZtafob6od-tMPYY5hhWdnJ9yG550zt8dHu3CcfXx9f5qfR2eZknR-dRVYpxSLnEoydEYqLVKvEJbq0hZWySEsTa6cSwwohhBRapKbkxsiMK1swi0WcurC1T57MvqFWKOsHaCpvsa5Ni93oQWc61irWQfh5Ftq-875HB9u-akJ94Awm_gATf5hQwoQSfvOHcJcQ-AME_jDzBwEM8g3EIIP1412HsWiw_MN4Bh4EX2bBj6rGm7-C_5v7z9jdTzCPZvPKD_jz1tz030AnIlHw6e0JnJ--zy7O34SH-AV7pLNd</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Cuff, James A.</creator><creator>Barton, Geoffrey J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990301</creationdate><title>Evaluation and improvement of multiple sequence methods for protein secondary structure prediction</title><author>Cuff, James A. ; Barton, Geoffrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5550-ff7e2fa35138657f76dcbc44b8da26f57a0b33343638ad1aa4915cb0ceb28f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>benchmarks</topic><topic>combination of methods</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>Models, Statistical</topic><topic>protein</topic><topic>Protein Structure, Secondary</topic><topic>Reproducibility of Results</topic><topic>secondary structure prediction</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuff, James A.</creatorcontrib><creatorcontrib>Barton, Geoffrey J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuff, James A.</au><au>Barton, Geoffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation and improvement of multiple sequence methods for protein secondary structure prediction</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>34</volume><issue>4</issue><spage>508</spage><epage>519</epage><pages>508-519</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396‐protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8‐ to 3‐state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross‐validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/. Proteins 1999;34:508–519. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10081963</pmid><doi>10.1002/(SICI)1097-0134(19990301)34:4&lt;508::AID-PROT10&gt;3.0.CO;2-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 1999-03, Vol.34 (4), p.508-519
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_69626526
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
benchmarks
combination of methods
Computer Simulation
Databases, Factual
Models, Statistical
protein
Protein Structure, Secondary
Reproducibility of Results
secondary structure prediction
Sequence Alignment
title Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20and%20improvement%20of%20multiple%20sequence%20methods%20for%20protein%20secondary%20structure%20prediction&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Cuff,%20James%20A.&rft.date=1999-03-01&rft.volume=34&rft.issue=4&rft.spage=508&rft.epage=519&rft.pages=508-519&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/(SICI)1097-0134(19990301)34:4%3C508::AID-PROT10%3E3.0.CO;2-4&rft_dat=%3Cproquest_cross%3E69626526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69626526&rft_id=info:pmid/10081963&rfr_iscdi=true