APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN
Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spec...
Gespeichert in:
Veröffentlicht in: | Annual review of medicine 1999-01, Vol.50 (1), p.277-290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 1 |
container_start_page | 277 |
container_title | Annual review of medicine |
container_volume | 50 |
creator | Roden, MD, M Shulman, MD, PhD, G. I |
description | Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human
glucose metabolism was studied through tracer and tissue biopsy methodology.
NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and
intracellular metabolite concentrations continuously.
13
C NMR
spectroscopy has shown that muscle glycogen synthesis accounts for the majority
of insulin-stimulated muscle glucose uptake in normal volunteers and that
defects in this process are chiefly responsible for insulin resistance in type
1 and type 2 diabetes mellitus, as well as in other insulin resistant states
(obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of
plasma FFA concentrations). Furthermore, using
31
P NMR spectroscopy
to measure intracellular glucose-6-phosphate, it has been shown that defects in
insulin-stimulated glucose transport/phosphorylation activity are primarily
responsible for the insulin resistance in these states. |
doi_str_mv | 10.1146/annurev.med.50.1.277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69618426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69618426</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMobk6_gUgQ8a01_5o2j7N2c9itY-3APYWsTWHSdbNZFb-9GRsMfPIp5N7fPedwALjFyMWY8SdV122jv9y1LlzPzlzi-2egiz3mOZTw93PQRYhzhxEsOuDKmA-EkKA0uAQdjJBPiR90wVt_Oo1HYT8bJZMUJgM4Gc9gOo3CbJakYTJdwCyBaTZ_WcDxPA3jCA7jRZgMowkcR1n_OYlH6RiO7K8_uQYXpaqMvjm-PTAfRFn46sTJ0FrEjmJI7BzMhV5ynzBPUIYDrSljNhfLCSlEmReU-h4RbMkLVhaYF5xobTdewAOlBMe0Bx4Puttm89lqs5Prlcl1Valab1ojuYUCRrgF7_-AH5u2qW02SQjhzPazV2MHKG82xjS6lNtmtVbNj8RI7puWx6albVp6diZt0_bs7qjdLveL09GhWgs8HAFlclWVjarzlTlxPsIB9ywmDtjeRVXWZ6W_zf8y_AJolJU1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222640061</pqid></control><display><type>article</type><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Roden, MD, M ; Shulman, MD, PhD, G. I</creator><creatorcontrib>Roden, MD, M ; Shulman, MD, PhD, G. I</creatorcontrib><description>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human
glucose metabolism was studied through tracer and tissue biopsy methodology.
NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and
intracellular metabolite concentrations continuously.
13
C NMR
spectroscopy has shown that muscle glycogen synthesis accounts for the majority
of insulin-stimulated muscle glucose uptake in normal volunteers and that
defects in this process are chiefly responsible for insulin resistance in type
1 and type 2 diabetes mellitus, as well as in other insulin resistant states
(obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of
plasma FFA concentrations). Furthermore, using
31
P NMR spectroscopy
to measure intracellular glucose-6-phosphate, it has been shown that defects in
insulin-stimulated glucose transport/phosphorylation activity are primarily
responsible for the insulin resistance in these states.</description><identifier>ISSN: 0066-4219</identifier><identifier>EISSN: 1545-326X</identifier><identifier>DOI: 10.1146/annurev.med.50.1.277</identifier><identifier>PMID: 10073278</identifier><identifier>CODEN: ARMCAH</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Biological and medical sciences ; Biopsy ; Carbon Isotopes ; Diabetes ; diabetes mellitus ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fatty Acids, Nonesterified - blood ; Fatty Acids, Nonesterified - metabolism ; Glucose ; Glucose - metabolism ; glucose-6-phosphate ; Glucose-6-Phosphate - metabolism ; Glycogen - biosynthesis ; Glycogen - metabolism ; Humans ; Insulin - metabolism ; Insulin Resistance ; Magnetic fields ; Magnetic Resonance Spectroscopy ; Medical sciences ; Metabolism ; Metabolites ; Muscle, Skeletal - metabolism ; NMR ; Nuclear magnetic resonance ; Obesity - metabolism ; Phosphorus Isotopes ; Phosphorylation ; Spectrum analysis ; stable isotopes</subject><ispartof>Annual review of medicine, 1999-01, Vol.50 (1), p.277-290</ispartof><rights>Copyright © 1999 by Annual Reviews. All rights reserved</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Annual Reviews, Inc. 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</citedby><cites>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.med.50.1.277?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.med.50.1.277$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,780,784,4182,27924,27925,78254,78255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1701865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10073278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roden, MD, M</creatorcontrib><creatorcontrib>Shulman, MD, PhD, G. I</creatorcontrib><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><title>Annual review of medicine</title><addtitle>Annu Rev Med</addtitle><description>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human
glucose metabolism was studied through tracer and tissue biopsy methodology.
NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and
intracellular metabolite concentrations continuously.
13
C NMR
spectroscopy has shown that muscle glycogen synthesis accounts for the majority
of insulin-stimulated muscle glucose uptake in normal volunteers and that
defects in this process are chiefly responsible for insulin resistance in type
1 and type 2 diabetes mellitus, as well as in other insulin resistant states
(obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of
plasma FFA concentrations). Furthermore, using
31
P NMR spectroscopy
to measure intracellular glucose-6-phosphate, it has been shown that defects in
insulin-stimulated glucose transport/phosphorylation activity are primarily
responsible for the insulin resistance in these states.</description><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Carbon Isotopes</subject><subject>Diabetes</subject><subject>diabetes mellitus</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glucose-6-phosphate</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Muscle, Skeletal - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Obesity - metabolism</subject><subject>Phosphorus Isotopes</subject><subject>Phosphorylation</subject><subject>Spectrum analysis</subject><subject>stable isotopes</subject><issn>0066-4219</issn><issn>1545-326X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkF9LwzAUxYMobk6_gUgQ8a01_5o2j7N2c9itY-3APYWsTWHSdbNZFb-9GRsMfPIp5N7fPedwALjFyMWY8SdV122jv9y1LlzPzlzi-2egiz3mOZTw93PQRYhzhxEsOuDKmA-EkKA0uAQdjJBPiR90wVt_Oo1HYT8bJZMUJgM4Gc9gOo3CbJakYTJdwCyBaTZ_WcDxPA3jCA7jRZgMowkcR1n_OYlH6RiO7K8_uQYXpaqMvjm-PTAfRFn46sTJ0FrEjmJI7BzMhV5ynzBPUIYDrSljNhfLCSlEmReU-h4RbMkLVhaYF5xobTdewAOlBMe0Bx4Puttm89lqs5Prlcl1Valab1ojuYUCRrgF7_-AH5u2qW02SQjhzPazV2MHKG82xjS6lNtmtVbNj8RI7puWx6albVp6diZt0_bs7qjdLveL09GhWgs8HAFlclWVjarzlTlxPsIB9ywmDtjeRVXWZ6W_zf8y_AJolJU1</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Roden, MD, M</creator><creator>Shulman, MD, PhD, G. I</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19990101</creationdate><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><author>Roden, MD, M ; Shulman, MD, PhD, G. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Carbon Isotopes</topic><topic>Diabetes</topic><topic>diabetes mellitus</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glucose-6-phosphate</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Muscle, Skeletal - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Obesity - metabolism</topic><topic>Phosphorus Isotopes</topic><topic>Phosphorylation</topic><topic>Spectrum analysis</topic><topic>stable isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roden, MD, M</creatorcontrib><creatorcontrib>Shulman, MD, PhD, G. I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roden, MD, M</au><au>Shulman, MD, PhD, G. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</atitle><jtitle>Annual review of medicine</jtitle><addtitle>Annu Rev Med</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>50</volume><issue>1</issue><spage>277</spage><epage>290</epage><pages>277-290</pages><issn>0066-4219</issn><eissn>1545-326X</eissn><coden>ARMCAH</coden><abstract>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human
glucose metabolism was studied through tracer and tissue biopsy methodology.
NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and
intracellular metabolite concentrations continuously.
13
C NMR
spectroscopy has shown that muscle glycogen synthesis accounts for the majority
of insulin-stimulated muscle glucose uptake in normal volunteers and that
defects in this process are chiefly responsible for insulin resistance in type
1 and type 2 diabetes mellitus, as well as in other insulin resistant states
(obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of
plasma FFA concentrations). Furthermore, using
31
P NMR spectroscopy
to measure intracellular glucose-6-phosphate, it has been shown that defects in
insulin-stimulated glucose transport/phosphorylation activity are primarily
responsible for the insulin resistance in these states.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><pmid>10073278</pmid><doi>10.1146/annurev.med.50.1.277</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4219 |
ispartof | Annual review of medicine, 1999-01, Vol.50 (1), p.277-290 |
issn | 0066-4219 1545-326X |
language | eng |
recordid | cdi_proquest_miscellaneous_69618426 |
source | Annual Reviews; MEDLINE |
subjects | Biological and medical sciences Biopsy Carbon Isotopes Diabetes diabetes mellitus Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 2 - metabolism Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fatty Acids, Nonesterified - blood Fatty Acids, Nonesterified - metabolism Glucose Glucose - metabolism glucose-6-phosphate Glucose-6-Phosphate - metabolism Glycogen - biosynthesis Glycogen - metabolism Humans Insulin - metabolism Insulin Resistance Magnetic fields Magnetic Resonance Spectroscopy Medical sciences Metabolism Metabolites Muscle, Skeletal - metabolism NMR Nuclear magnetic resonance Obesity - metabolism Phosphorus Isotopes Phosphorylation Spectrum analysis stable isotopes |
title | APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPLICATIONS%20OF%20NMR%20SPECTROSCOPY%20TO%20STUDY%20MUSCLE%20GLYCOGEN%20METABOLISM%20IN%20MAN&rft.jtitle=Annual%20review%20of%20medicine&rft.au=Roden,%20MD,%20M&rft.date=1999-01-01&rft.volume=50&rft.issue=1&rft.spage=277&rft.epage=290&rft.pages=277-290&rft.issn=0066-4219&rft.eissn=1545-326X&rft.coden=ARMCAH&rft_id=info:doi/10.1146/annurev.med.50.1.277&rft_dat=%3Cproquest_cross%3E69618426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222640061&rft_id=info:pmid/10073278&rfr_iscdi=true |