APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN

Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of medicine 1999-01, Vol.50 (1), p.277-290
Hauptverfasser: Roden, MD, M, Shulman, MD, PhD, G. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 1
container_start_page 277
container_title Annual review of medicine
container_volume 50
creator Roden, MD, M
Shulman, MD, PhD, G. I
description Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spectroscopy has shown that muscle glycogen synthesis accounts for the majority of insulin-stimulated muscle glucose uptake in normal volunteers and that defects in this process are chiefly responsible for insulin resistance in type 1 and type 2 diabetes mellitus, as well as in other insulin resistant states (obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of plasma FFA concentrations). Furthermore, using 31 P NMR spectroscopy to measure intracellular glucose-6-phosphate, it has been shown that defects in insulin-stimulated glucose transport/phosphorylation activity are primarily responsible for the insulin resistance in these states.
doi_str_mv 10.1146/annurev.med.50.1.277
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69618426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69618426</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMobk6_gUgQ8a01_5o2j7N2c9itY-3APYWsTWHSdbNZFb-9GRsMfPIp5N7fPedwALjFyMWY8SdV122jv9y1LlzPzlzi-2egiz3mOZTw93PQRYhzhxEsOuDKmA-EkKA0uAQdjJBPiR90wVt_Oo1HYT8bJZMUJgM4Gc9gOo3CbJakYTJdwCyBaTZ_WcDxPA3jCA7jRZgMowkcR1n_OYlH6RiO7K8_uQYXpaqMvjm-PTAfRFn46sTJ0FrEjmJI7BzMhV5ynzBPUIYDrSljNhfLCSlEmReU-h4RbMkLVhaYF5xobTdewAOlBMe0Bx4Puttm89lqs5Prlcl1Valab1ojuYUCRrgF7_-AH5u2qW02SQjhzPazV2MHKG82xjS6lNtmtVbNj8RI7puWx6albVp6diZt0_bs7qjdLveL09GhWgs8HAFlclWVjarzlTlxPsIB9ywmDtjeRVXWZ6W_zf8y_AJolJU1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222640061</pqid></control><display><type>article</type><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Roden, MD, M ; Shulman, MD, PhD, G. I</creator><creatorcontrib>Roden, MD, M ; Shulman, MD, PhD, G. I</creatorcontrib><description>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spectroscopy has shown that muscle glycogen synthesis accounts for the majority of insulin-stimulated muscle glucose uptake in normal volunteers and that defects in this process are chiefly responsible for insulin resistance in type 1 and type 2 diabetes mellitus, as well as in other insulin resistant states (obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of plasma FFA concentrations). Furthermore, using 31 P NMR spectroscopy to measure intracellular glucose-6-phosphate, it has been shown that defects in insulin-stimulated glucose transport/phosphorylation activity are primarily responsible for the insulin resistance in these states.</description><identifier>ISSN: 0066-4219</identifier><identifier>EISSN: 1545-326X</identifier><identifier>DOI: 10.1146/annurev.med.50.1.277</identifier><identifier>PMID: 10073278</identifier><identifier>CODEN: ARMCAH</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Biological and medical sciences ; Biopsy ; Carbon Isotopes ; Diabetes ; diabetes mellitus ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fatty Acids, Nonesterified - blood ; Fatty Acids, Nonesterified - metabolism ; Glucose ; Glucose - metabolism ; glucose-6-phosphate ; Glucose-6-Phosphate - metabolism ; Glycogen - biosynthesis ; Glycogen - metabolism ; Humans ; Insulin - metabolism ; Insulin Resistance ; Magnetic fields ; Magnetic Resonance Spectroscopy ; Medical sciences ; Metabolism ; Metabolites ; Muscle, Skeletal - metabolism ; NMR ; Nuclear magnetic resonance ; Obesity - metabolism ; Phosphorus Isotopes ; Phosphorylation ; Spectrum analysis ; stable isotopes</subject><ispartof>Annual review of medicine, 1999-01, Vol.50 (1), p.277-290</ispartof><rights>Copyright © 1999 by Annual Reviews. All rights reserved</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Annual Reviews, Inc. 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</citedby><cites>FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.med.50.1.277?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.med.50.1.277$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,780,784,4182,27924,27925,78254,78255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1701865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10073278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roden, MD, M</creatorcontrib><creatorcontrib>Shulman, MD, PhD, G. I</creatorcontrib><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><title>Annual review of medicine</title><addtitle>Annu Rev Med</addtitle><description>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spectroscopy has shown that muscle glycogen synthesis accounts for the majority of insulin-stimulated muscle glucose uptake in normal volunteers and that defects in this process are chiefly responsible for insulin resistance in type 1 and type 2 diabetes mellitus, as well as in other insulin resistant states (obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of plasma FFA concentrations). Furthermore, using 31 P NMR spectroscopy to measure intracellular glucose-6-phosphate, it has been shown that defects in insulin-stimulated glucose transport/phosphorylation activity are primarily responsible for the insulin resistance in these states.</description><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Carbon Isotopes</subject><subject>Diabetes</subject><subject>diabetes mellitus</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glucose-6-phosphate</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Muscle, Skeletal - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Obesity - metabolism</subject><subject>Phosphorus Isotopes</subject><subject>Phosphorylation</subject><subject>Spectrum analysis</subject><subject>stable isotopes</subject><issn>0066-4219</issn><issn>1545-326X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkF9LwzAUxYMobk6_gUgQ8a01_5o2j7N2c9itY-3APYWsTWHSdbNZFb-9GRsMfPIp5N7fPedwALjFyMWY8SdV122jv9y1LlzPzlzi-2egiz3mOZTw93PQRYhzhxEsOuDKmA-EkKA0uAQdjJBPiR90wVt_Oo1HYT8bJZMUJgM4Gc9gOo3CbJakYTJdwCyBaTZ_WcDxPA3jCA7jRZgMowkcR1n_OYlH6RiO7K8_uQYXpaqMvjm-PTAfRFn46sTJ0FrEjmJI7BzMhV5ynzBPUIYDrSljNhfLCSlEmReU-h4RbMkLVhaYF5xobTdewAOlBMe0Bx4Puttm89lqs5Prlcl1Valab1ojuYUCRrgF7_-AH5u2qW02SQjhzPazV2MHKG82xjS6lNtmtVbNj8RI7puWx6albVp6diZt0_bs7qjdLveL09GhWgs8HAFlclWVjarzlTlxPsIB9ywmDtjeRVXWZ6W_zf8y_AJolJU1</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Roden, MD, M</creator><creator>Shulman, MD, PhD, G. I</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19990101</creationdate><title>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</title><author>Roden, MD, M ; Shulman, MD, PhD, G. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-169eb6724593418ee3449334c22d9fcd3375294b6d4fd16d62ee2d95868aa9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Carbon Isotopes</topic><topic>Diabetes</topic><topic>diabetes mellitus</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glucose-6-phosphate</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Muscle, Skeletal - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Obesity - metabolism</topic><topic>Phosphorus Isotopes</topic><topic>Phosphorylation</topic><topic>Spectrum analysis</topic><topic>stable isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roden, MD, M</creatorcontrib><creatorcontrib>Shulman, MD, PhD, G. I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roden, MD, M</au><au>Shulman, MD, PhD, G. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN</atitle><jtitle>Annual review of medicine</jtitle><addtitle>Annu Rev Med</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>50</volume><issue>1</issue><spage>277</spage><epage>290</epage><pages>277-290</pages><issn>0066-4219</issn><eissn>1545-326X</eissn><coden>ARMCAH</coden><abstract>Prior to the advent of nuclear magnetic resonance (NMR) spectroscopy, human glucose metabolism was studied through tracer and tissue biopsy methodology. NMR spectroscopy now provides a noninvasive means to monitor metabolic flux and intracellular metabolite concentrations continuously. 13 C NMR spectroscopy has shown that muscle glycogen synthesis accounts for the majority of insulin-stimulated muscle glucose uptake in normal volunteers and that defects in this process are chiefly responsible for insulin resistance in type 1 and type 2 diabetes mellitus, as well as in other insulin resistant states (obesity, insulin-resistant offspring of type 2 diabetic parents, elevation of plasma FFA concentrations). Furthermore, using 31 P NMR spectroscopy to measure intracellular glucose-6-phosphate, it has been shown that defects in insulin-stimulated glucose transport/phosphorylation activity are primarily responsible for the insulin resistance in these states.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><pmid>10073278</pmid><doi>10.1146/annurev.med.50.1.277</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0066-4219
ispartof Annual review of medicine, 1999-01, Vol.50 (1), p.277-290
issn 0066-4219
1545-326X
language eng
recordid cdi_proquest_miscellaneous_69618426
source Annual Reviews; MEDLINE
subjects Biological and medical sciences
Biopsy
Carbon Isotopes
Diabetes
diabetes mellitus
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 2 - metabolism
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fatty Acids, Nonesterified - blood
Fatty Acids, Nonesterified - metabolism
Glucose
Glucose - metabolism
glucose-6-phosphate
Glucose-6-Phosphate - metabolism
Glycogen - biosynthesis
Glycogen - metabolism
Humans
Insulin - metabolism
Insulin Resistance
Magnetic fields
Magnetic Resonance Spectroscopy
Medical sciences
Metabolism
Metabolites
Muscle, Skeletal - metabolism
NMR
Nuclear magnetic resonance
Obesity - metabolism
Phosphorus Isotopes
Phosphorylation
Spectrum analysis
stable isotopes
title APPLICATIONS OF NMR SPECTROSCOPY TO STUDY MUSCLE GLYCOGEN METABOLISM IN MAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPLICATIONS%20OF%20NMR%20SPECTROSCOPY%20TO%20STUDY%20MUSCLE%20GLYCOGEN%20METABOLISM%20IN%20MAN&rft.jtitle=Annual%20review%20of%20medicine&rft.au=Roden,%20MD,%20M&rft.date=1999-01-01&rft.volume=50&rft.issue=1&rft.spage=277&rft.epage=290&rft.pages=277-290&rft.issn=0066-4219&rft.eissn=1545-326X&rft.coden=ARMCAH&rft_id=info:doi/10.1146/annurev.med.50.1.277&rft_dat=%3Cproquest_cross%3E69618426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222640061&rft_id=info:pmid/10073278&rfr_iscdi=true