Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins

Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-03, Vol.96 (5), p.2013-2018
Hauptverfasser: Terwilliger, Nora B., Dangott, Lawrence, Ryan, Margaret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2018
container_issue 5
container_start_page 2013
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Terwilliger, Nora B.
Dangott, Lawrence
Ryan, Margaret
description Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family--hemocyanin, cryptocyanin, phenoloxidase, and hexamerins--may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.
doi_str_mv 10.1073/pnas.96.5.2013
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69602255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>47005</jstor_id><sourcerecordid>47005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-a7cbd43390f78e65c6d817e52030c8d95684a83318feece0547ef5a131e282613</originalsourceid><addsrcrecordid>eNqFkcFv0zAYxS0EYt3gygEJZO3AiYTPduw4iMtUDTapCA5wtjzHWVMSO9jOWP97ElqqwgFOlr73e5-f_RB6RiAnULI3g9Mxr0TOcwqEPUALAhXJRFHBQ7QAoGUmC1qcoNMYNwBQcQmP0QkB4IRLsUBuGbZD8marXeteY42XYYxJG6sd_ui71Lpb_Dn4ZFv3Fl_e-W5MrXc6bPGqdd_wjzat8UVI6-AHX-Mr2-9XRaxdja9dtCZN43vd2zBNn6BHje6ifbo_z9DX95dfllfZ6tOH6-XFKjOcFCnTpbmpC8YqaEppBTeilqS0nAIDI-uKC1loyRiRjbXGAi9K23BNGLFUUkHYGXq32zuMN72tjXUp6E4Noe2n7MrrVv2puHatbv2doqKkcrK_2tuD_z7amFTfRmO7Tjvrx6hEJYBSzv8LkpIIRqGawPO_wI0fg5v-QM3FcWDFDOU7yAQfY7DNITABNdet5rpVJRT_5ZoML4-feYTv-j3KNxt_y4cFqhm7Ltn7NIEv_gVO-vOdvonJhwNQlNNN7Cdzasg-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201350349</pqid></control><display><type>article</type><title>Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Terwilliger, Nora B. ; Dangott, Lawrence ; Ryan, Margaret</creator><creatorcontrib>Terwilliger, Nora B. ; Dangott, Lawrence ; Ryan, Margaret</creatorcontrib><description>Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family--hemocyanin, cryptocyanin, phenoloxidase, and hexamerins--may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.5.2013</identifier><identifier>PMID: 10051586</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Animals ; Arthropods ; Arthropods - genetics ; Astacoidea - genetics ; Binding Sites ; Biochemistry ; Biological Sciences ; Blood Proteins - chemistry ; Blood Proteins - genetics ; Blood Proteins - metabolism ; Cancer magister ; Conserved Sequence ; Copper - metabolism ; Crabs ; Crustaceans ; DNA, Complementary ; Evolution ; Evolution, Molecular ; Freshwater ; Hemocyanins - metabolism ; Hemolymph ; Insect genetics ; Insect proteins ; Insect Proteins - chemistry ; Insecta - genetics ; Insects ; Invertebrates ; Molecular Sequence Data ; Molecules ; Molting ; Oxygen ; Phylogeny ; Polymerase Chain Reaction ; Proteins ; Recombinant Proteins - chemistry ; Sequence Alignment ; Sequence Homology, Amino Acid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-03, Vol.96 (5), p.2013-2018</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 2, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-a7cbd43390f78e65c6d817e52030c8d95684a83318feece0547ef5a131e282613</citedby><cites>FETCH-LOGICAL-c514t-a7cbd43390f78e65c6d817e52030c8d95684a83318feece0547ef5a131e282613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/47005$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/47005$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10051586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terwilliger, Nora B.</creatorcontrib><creatorcontrib>Dangott, Lawrence</creatorcontrib><creatorcontrib>Ryan, Margaret</creatorcontrib><title>Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family--hemocyanin, cryptocyanin, phenoloxidase, and hexamerins--may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arthropods</subject><subject>Arthropods - genetics</subject><subject>Astacoidea - genetics</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Blood Proteins - chemistry</subject><subject>Blood Proteins - genetics</subject><subject>Blood Proteins - metabolism</subject><subject>Cancer magister</subject><subject>Conserved Sequence</subject><subject>Copper - metabolism</subject><subject>Crabs</subject><subject>Crustaceans</subject><subject>DNA, Complementary</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Freshwater</subject><subject>Hemocyanins - metabolism</subject><subject>Hemolymph</subject><subject>Insect genetics</subject><subject>Insect proteins</subject><subject>Insect Proteins - chemistry</subject><subject>Insecta - genetics</subject><subject>Insects</subject><subject>Invertebrates</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Molting</subject><subject>Oxygen</subject><subject>Phylogeny</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFv0zAYxS0EYt3gygEJZO3AiYTPduw4iMtUDTapCA5wtjzHWVMSO9jOWP97ElqqwgFOlr73e5-f_RB6RiAnULI3g9Mxr0TOcwqEPUALAhXJRFHBQ7QAoGUmC1qcoNMYNwBQcQmP0QkB4IRLsUBuGbZD8marXeteY42XYYxJG6sd_ui71Lpb_Dn4ZFv3Fl_e-W5MrXc6bPGqdd_wjzat8UVI6-AHX-Mr2-9XRaxdja9dtCZN43vd2zBNn6BHje6ifbo_z9DX95dfllfZ6tOH6-XFKjOcFCnTpbmpC8YqaEppBTeilqS0nAIDI-uKC1loyRiRjbXGAi9K23BNGLFUUkHYGXq32zuMN72tjXUp6E4Noe2n7MrrVv2puHatbv2doqKkcrK_2tuD_z7amFTfRmO7Tjvrx6hEJYBSzv8LkpIIRqGawPO_wI0fg5v-QM3FcWDFDOU7yAQfY7DNITABNdet5rpVJRT_5ZoML4-feYTv-j3KNxt_y4cFqhm7Ltn7NIEv_gVO-vOdvonJhwNQlNNN7Cdzasg-</recordid><startdate>19990302</startdate><enddate>19990302</enddate><creator>Terwilliger, Nora B.</creator><creator>Dangott, Lawrence</creator><creator>Ryan, Margaret</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990302</creationdate><title>Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins</title><author>Terwilliger, Nora B. ; Dangott, Lawrence ; Ryan, Margaret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-a7cbd43390f78e65c6d817e52030c8d95684a83318feece0547ef5a131e282613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arthropods</topic><topic>Arthropods - genetics</topic><topic>Astacoidea - genetics</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Blood Proteins - chemistry</topic><topic>Blood Proteins - genetics</topic><topic>Blood Proteins - metabolism</topic><topic>Cancer magister</topic><topic>Conserved Sequence</topic><topic>Copper - metabolism</topic><topic>Crabs</topic><topic>Crustaceans</topic><topic>DNA, Complementary</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Freshwater</topic><topic>Hemocyanins - metabolism</topic><topic>Hemolymph</topic><topic>Insect genetics</topic><topic>Insect proteins</topic><topic>Insect Proteins - chemistry</topic><topic>Insecta - genetics</topic><topic>Insects</topic><topic>Invertebrates</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Molting</topic><topic>Oxygen</topic><topic>Phylogeny</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terwilliger, Nora B.</creatorcontrib><creatorcontrib>Dangott, Lawrence</creatorcontrib><creatorcontrib>Ryan, Margaret</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terwilliger, Nora B.</au><au>Dangott, Lawrence</au><au>Ryan, Margaret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-03-02</date><risdate>1999</risdate><volume>96</volume><issue>5</issue><spage>2013</spage><epage>2018</epage><pages>2013-2018</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family--hemocyanin, cryptocyanin, phenoloxidase, and hexamerins--may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10051586</pmid><doi>10.1073/pnas.96.5.2013</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-03, Vol.96 (5), p.2013-2018
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69602255
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Arthropods
Arthropods - genetics
Astacoidea - genetics
Binding Sites
Biochemistry
Biological Sciences
Blood Proteins - chemistry
Blood Proteins - genetics
Blood Proteins - metabolism
Cancer magister
Conserved Sequence
Copper - metabolism
Crabs
Crustaceans
DNA, Complementary
Evolution
Evolution, Molecular
Freshwater
Hemocyanins - metabolism
Hemolymph
Insect genetics
Insect proteins
Insect Proteins - chemistry
Insecta - genetics
Insects
Invertebrates
Molecular Sequence Data
Molecules
Molting
Oxygen
Phylogeny
Polymerase Chain Reaction
Proteins
Recombinant Proteins - chemistry
Sequence Alignment
Sequence Homology, Amino Acid
title Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptocyanin,%20a%20Crustacean%20Molting%20Protein:%20Evolutionary%20Link%20with%20Arthropod%20Hemocyanins%20and%20Insect%20Hexamerins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Terwilliger,%20Nora%20B.&rft.date=1999-03-02&rft.volume=96&rft.issue=5&rft.spage=2013&rft.epage=2018&rft.pages=2013-2018&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.5.2013&rft_dat=%3Cjstor_proqu%3E47005%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201350349&rft_id=info:pmid/10051586&rft_jstor_id=47005&rfr_iscdi=true