Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae
A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the s...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 1999-02, Vol.68 (1), p.15-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Journal of biotechnology |
container_volume | 68 |
creator | Rodrı́guez-Acosta, Felipe Regalado, Carlos M. Torres, Néstor V. |
description | A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by
Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in
S.
cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given. |
doi_str_mv | 10.1016/S0168-1656(98)00178-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69594558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165698001783</els_id><sourcerecordid>400942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</originalsourceid><addsrcrecordid>eNqFksuO1DAQRSMEYpqBTwB5gRBIBOzEThw2aDTiJY1gMbC2qiuVjlES99juEc0f8lc46RaPVW9sqXTq3rLrZtljwV8JLqrX1-nQuahU9bzRLzgXtc7LO9lK6LrMpa7Ku9nqD3KWPQjhO-dcNkrcz84E52VVV_Uq-_XZTflgJwLP3Dba0f6EaN3EXMfW1kXCfnKD21iEgW29QwqBAlvvWYgOewjRIoNh47yN_RjesIvtdkjwohEdiz2xEX78pzvXklS7w6XiIdJcpthD8nrJNsMeybuBwdQyBL92_b6dqcX3GjD5ejcmKLAE0q0NFuhhdq-DIdCj432efXv_7uvlx_zqy4dPlxdXOUpVxLyQTSV4J3mLXaUFCdUprZUWXGJHACXXpDXKmtcFUUEKoRMFIUitxBpUeZ49O-imJ9zsKEQz2oA0DDCR2wVTNaqRSumTYCHKqpRCngRFLRpZ1rO1OoDoXQieOrP1dgS_N4KbORVmSYWZV24abZZUmDL1PTka7NYjtf90HWKQgKdHAEJadOdhQhv-cnUhpZh13h4wSv97a8mbgJYmpNZ6wmhaZ09M8hu90tms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17194375</pqid></control><display><type>article</type><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</creator><creatorcontrib>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</creatorcontrib><description>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by
Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in
S.
cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/S0168-1656(98)00178-3</identifier><identifier>PMID: 10036767</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Biochemistry ; Biological and medical sciences ; Biotechnology ; Carbohydrate Metabolism ; Carbohydrates ; Enzyme kinetics ; Ethanol ; Ethanol - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects ; Glycerol ; Glycerol - metabolism ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Metabolic engineering ; Metabolism ; Metaheuristics ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Biological ; Non-linear optimization ; Nonlinear Dynamics ; Optimization ; Random processes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Stochastic Processes</subject><ispartof>Journal of biotechnology, 1999-02, Vol.68 (1), p.15-28</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</citedby><cites>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0168-1656(98)00178-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1724413$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10036767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrı́guez-Acosta, Felipe</creatorcontrib><creatorcontrib>Regalado, Carlos M.</creatorcontrib><creatorcontrib>Torres, Néstor V.</creatorcontrib><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by
Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in
S.
cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Enzyme kinetics</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Metaheuristics</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Biological</subject><subject>Non-linear optimization</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Random processes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stochastic Processes</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksuO1DAQRSMEYpqBTwB5gRBIBOzEThw2aDTiJY1gMbC2qiuVjlES99juEc0f8lc46RaPVW9sqXTq3rLrZtljwV8JLqrX1-nQuahU9bzRLzgXtc7LO9lK6LrMpa7Ku9nqD3KWPQjhO-dcNkrcz84E52VVV_Uq-_XZTflgJwLP3Dba0f6EaN3EXMfW1kXCfnKD21iEgW29QwqBAlvvWYgOewjRIoNh47yN_RjesIvtdkjwohEdiz2xEX78pzvXklS7w6XiIdJcpthD8nrJNsMeybuBwdQyBL92_b6dqcX3GjD5ejcmKLAE0q0NFuhhdq-DIdCj432efXv_7uvlx_zqy4dPlxdXOUpVxLyQTSV4J3mLXaUFCdUprZUWXGJHACXXpDXKmtcFUUEKoRMFIUitxBpUeZ49O-imJ9zsKEQz2oA0DDCR2wVTNaqRSumTYCHKqpRCngRFLRpZ1rO1OoDoXQieOrP1dgS_N4KbORVmSYWZV24abZZUmDL1PTka7NYjtf90HWKQgKdHAEJadOdhQhv-cnUhpZh13h4wSv97a8mbgJYmpNZ6wmhaZ09M8hu90tms</recordid><startdate>19990205</startdate><enddate>19990205</enddate><creator>Rodrı́guez-Acosta, Felipe</creator><creator>Regalado, Carlos M.</creator><creator>Torres, Néstor V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19990205</creationdate><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><author>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Enzyme kinetics</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Metaheuristics</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Biological</topic><topic>Non-linear optimization</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Random processes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrı́guez-Acosta, Felipe</creatorcontrib><creatorcontrib>Regalado, Carlos M.</creatorcontrib><creatorcontrib>Torres, Néstor V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrı́guez-Acosta, Felipe</au><au>Regalado, Carlos M.</au><au>Torres, Néstor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>1999-02-05</date><risdate>1999</risdate><volume>68</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by
Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in
S.
cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>10036767</pmid><doi>10.1016/S0168-1656(98)00178-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1656 |
ispartof | Journal of biotechnology, 1999-02, Vol.68 (1), p.15-28 |
issn | 0168-1656 1873-4863 |
language | eng |
recordid | cdi_proquest_miscellaneous_69594558 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Biochemistry Biological and medical sciences Biotechnology Carbohydrate Metabolism Carbohydrates Enzyme kinetics Ethanol Ethanol - metabolism Fundamental and applied biological sciences. Psychology General aspects Glycerol Glycerol - metabolism Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Metabolic engineering Metabolism Metaheuristics Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Models, Biological Non-linear optimization Nonlinear Dynamics Optimization Random processes Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Stochastic Processes |
title | Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20optimization%20of%20biotechnological%20processes%20by%20stochastic%20algorithms:%20Application%20to%20the%20maximization%20of%20the%20production%20rate%20of%20ethanol,%20glycerol%20and%20carbohydrates%20by%20Saccharomyces%20cerevisiae&rft.jtitle=Journal%20of%20biotechnology&rft.au=Rodr%C4%B1%CC%81guez-Acosta,%20Felipe&rft.date=1999-02-05&rft.volume=68&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/S0168-1656(98)00178-3&rft_dat=%3Cproquest_cross%3E400942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17194375&rft_id=info:pmid/10036767&rft_els_id=S0168165698001783&rfr_iscdi=true |