Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae

A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 1999-02, Vol.68 (1), p.15-28
Hauptverfasser: Rodrı́guez-Acosta, Felipe, Regalado, Carlos M., Torres, Néstor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 15
container_title Journal of biotechnology
container_volume 68
creator Rodrı́guez-Acosta, Felipe
Regalado, Carlos M.
Torres, Néstor V.
description A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in S. cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.
doi_str_mv 10.1016/S0168-1656(98)00178-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69594558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165698001783</els_id><sourcerecordid>400942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</originalsourceid><addsrcrecordid>eNqFksuO1DAQRSMEYpqBTwB5gRBIBOzEThw2aDTiJY1gMbC2qiuVjlES99juEc0f8lc46RaPVW9sqXTq3rLrZtljwV8JLqrX1-nQuahU9bzRLzgXtc7LO9lK6LrMpa7Ku9nqD3KWPQjhO-dcNkrcz84E52VVV_Uq-_XZTflgJwLP3Dba0f6EaN3EXMfW1kXCfnKD21iEgW29QwqBAlvvWYgOewjRIoNh47yN_RjesIvtdkjwohEdiz2xEX78pzvXklS7w6XiIdJcpthD8nrJNsMeybuBwdQyBL92_b6dqcX3GjD5ejcmKLAE0q0NFuhhdq-DIdCj432efXv_7uvlx_zqy4dPlxdXOUpVxLyQTSV4J3mLXaUFCdUprZUWXGJHACXXpDXKmtcFUUEKoRMFIUitxBpUeZ49O-imJ9zsKEQz2oA0DDCR2wVTNaqRSumTYCHKqpRCngRFLRpZ1rO1OoDoXQieOrP1dgS_N4KbORVmSYWZV24abZZUmDL1PTka7NYjtf90HWKQgKdHAEJadOdhQhv-cnUhpZh13h4wSv97a8mbgJYmpNZ6wmhaZ09M8hu90tms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17194375</pqid></control><display><type>article</type><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</creator><creatorcontrib>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</creatorcontrib><description>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in S. cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/S0168-1656(98)00178-3</identifier><identifier>PMID: 10036767</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Biochemistry ; Biological and medical sciences ; Biotechnology ; Carbohydrate Metabolism ; Carbohydrates ; Enzyme kinetics ; Ethanol ; Ethanol - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects ; Glycerol ; Glycerol - metabolism ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Metabolic engineering ; Metabolism ; Metaheuristics ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Biological ; Non-linear optimization ; Nonlinear Dynamics ; Optimization ; Random processes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Stochastic Processes</subject><ispartof>Journal of biotechnology, 1999-02, Vol.68 (1), p.15-28</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</citedby><cites>FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0168-1656(98)00178-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1724413$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10036767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrı́guez-Acosta, Felipe</creatorcontrib><creatorcontrib>Regalado, Carlos M.</creatorcontrib><creatorcontrib>Torres, Néstor V.</creatorcontrib><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in S. cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Enzyme kinetics</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Metaheuristics</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Biological</subject><subject>Non-linear optimization</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Random processes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stochastic Processes</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksuO1DAQRSMEYpqBTwB5gRBIBOzEThw2aDTiJY1gMbC2qiuVjlES99juEc0f8lc46RaPVW9sqXTq3rLrZtljwV8JLqrX1-nQuahU9bzRLzgXtc7LO9lK6LrMpa7Ku9nqD3KWPQjhO-dcNkrcz84E52VVV_Uq-_XZTflgJwLP3Dba0f6EaN3EXMfW1kXCfnKD21iEgW29QwqBAlvvWYgOewjRIoNh47yN_RjesIvtdkjwohEdiz2xEX78pzvXklS7w6XiIdJcpthD8nrJNsMeybuBwdQyBL92_b6dqcX3GjD5ejcmKLAE0q0NFuhhdq-DIdCj432efXv_7uvlx_zqy4dPlxdXOUpVxLyQTSV4J3mLXaUFCdUprZUWXGJHACXXpDXKmtcFUUEKoRMFIUitxBpUeZ49O-imJ9zsKEQz2oA0DDCR2wVTNaqRSumTYCHKqpRCngRFLRpZ1rO1OoDoXQieOrP1dgS_N4KbORVmSYWZV24abZZUmDL1PTka7NYjtf90HWKQgKdHAEJadOdhQhv-cnUhpZh13h4wSv97a8mbgJYmpNZ6wmhaZ09M8hu90tms</recordid><startdate>19990205</startdate><enddate>19990205</enddate><creator>Rodrı́guez-Acosta, Felipe</creator><creator>Regalado, Carlos M.</creator><creator>Torres, Néstor V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19990205</creationdate><title>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</title><author>Rodrı́guez-Acosta, Felipe ; Regalado, Carlos M. ; Torres, Néstor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-249610f40dcf681e15f58858104cfeaa308e88c47072ee2e5caf12eca4851ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Enzyme kinetics</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Metaheuristics</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Biological</topic><topic>Non-linear optimization</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Random processes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrı́guez-Acosta, Felipe</creatorcontrib><creatorcontrib>Regalado, Carlos M.</creatorcontrib><creatorcontrib>Torres, Néstor V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrı́guez-Acosta, Felipe</au><au>Regalado, Carlos M.</au><au>Torres, Néstor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>1999-02-05</date><risdate>1999</risdate><volume>68</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>A non-linear optimization, based on an stochastic multi-start search algorithm, has been applied to the maximization of the production rates of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. This optimization is applied to two alternative (non-linear) model representations of the same system, namely the Michaelis–Menten and the generalized mass action forms. We find a complete agreement between the results obtained using both representations. This is, maximization of the ethanol production rate requires modulation of up to six enzymes, while modification of only one enzyme is sufficient to obtain a significant improvement in the production rate of glycerol and carbohydrates. When the results are compared with those previously obtained using an indirect linear optimization method (Torres, N.V., Voit, E.O., González-Alcón, C., Rodrı́guez, F. 1997. An integrated optimization method for biochemical systems. Description of method and application to ethanol, glycerol and carbohydrate production in S. cerevisiae. Biotechnol. Bioeng. 55(5), 758–772.), we find close agreement between both optimization techniques. Qualitatively, both optimization approaches render the same profile of enzymes to be modulated, while quantitatively, discrepancies arise when the objective function is the maximization of the ethanol production rate. Reasons for such discrepancies and an evaluation of the advantages of each method (linear vs non-linear) are given.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>10036767</pmid><doi>10.1016/S0168-1656(98)00178-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 1999-02, Vol.68 (1), p.15-28
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_69594558
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Biochemistry
Biological and medical sciences
Biotechnology
Carbohydrate Metabolism
Carbohydrates
Enzyme kinetics
Ethanol
Ethanol - metabolism
Fundamental and applied biological sciences. Psychology
General aspects
Glycerol
Glycerol - metabolism
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Metabolic engineering
Metabolism
Metaheuristics
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Models, Biological
Non-linear optimization
Nonlinear Dynamics
Optimization
Random processes
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Stochastic Processes
title Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20optimization%20of%20biotechnological%20processes%20by%20stochastic%20algorithms:%20Application%20to%20the%20maximization%20of%20the%20production%20rate%20of%20ethanol,%20glycerol%20and%20carbohydrates%20by%20Saccharomyces%20cerevisiae&rft.jtitle=Journal%20of%20biotechnology&rft.au=Rodr%C4%B1%CC%81guez-Acosta,%20Felipe&rft.date=1999-02-05&rft.volume=68&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/S0168-1656(98)00178-3&rft_dat=%3Cproquest_cross%3E400942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17194375&rft_id=info:pmid/10036767&rft_els_id=S0168165698001783&rfr_iscdi=true