Enhanced Binding to DNA and Topoisomerase I Inhibition by an Analog of the Antitumor Antibiotic Rebeccamycin Containing an Amino Sugar Residue

Many antitumor agents contain a carbohydrate side chain appended to a DNA-intercalating chromophore. This is the case with anthracyclines such as daunomycin and also with indolocarbazoles including the antibiotic rebeccamycin and its tumor active analog, NB506. In each case, the glycoside residue pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 1999-02, Vol.55 (2), p.377-385
Hauptverfasser: Bailly, C, Qu, X, Anizon, F, Prudhomme, M, Riou, J F, Chaires, J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many antitumor agents contain a carbohydrate side chain appended to a DNA-intercalating chromophore. This is the case with anthracyclines such as daunomycin and also with indolocarbazoles including the antibiotic rebeccamycin and its tumor active analog, NB506. In each case, the glycoside residue plays a significant role in the interaction of the drug with the DNA double helix. In this study we show that the DNA-binding affinity and sequence selectivity of a rebeccamycin derivative can be enhanced by replacing the glucose residue with a 2′-aminoglucose moiety. The drug-DNA interactions were studied by thermal denaturation, fluorescence, and footprinting experiments. The thermodynamic parameters indicate that the newly introduced amino group on the glycoside residue significantly enhanced binding to DNA by increasing the contribution of the polyelectrolyte effect to the binding free energy, but does not appear to participate in any specific molecular contacts. The energetic contribution of the amino group of the rebeccamycin analog was found to be weaker than that of the sugar amino group of daunomycin, possibly because the indolocarbazole derivative is only partially charged at neutral pH. Topoisomerase I-mediated DNA cleavage studies reveal that the OH→NH 2 substitution does not affect the capacity of the drug to stabilize enzyme-DNA covalent complexes. Cytotoxicity studies with P388 leukemia cells sensitive or resistant to camptothecin suggest that topoisomerase I represents a privileged intracellular target for the studied compounds. The role of the sugar amino group is discussed. The study provides useful guidelines for the development of a new generation of indolocarbazole-based antitumor agents.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.55.2.377