Retardation of Retinal Vascular Development in Apelin-Deficient Mice
OBJECTIVE—Apelin is an endogenous ligand for the G protein–coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice. METHODS AND RESULTS—Apelin-KO mice showed impaired r...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2008-10, Vol.28 (10), p.1717-1722 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1722 |
---|---|
container_issue | 10 |
container_start_page | 1717 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 28 |
creator | Kasai, Atsushi Shintani, Norihito Kato, Hideaki Matsuda, Satoshi Gomi, Fumi Haba, Ryota Hashimoto, Hitoshi Kakuda, Michiya Tano, Yasuo Baba, Akemichi |
description | OBJECTIVE—Apelin is an endogenous ligand for the G protein–coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice.
METHODS AND RESULTS—Apelin-KO mice showed impaired retinal vascularization and ocular development, which were analyzed by histology, immunohistochemistry, real-time polymerase chain reaction, and the mouse corneal micropocket assay. Apelin-KO mice showed significantly impaired retinal vascularization in the early postnatal period. Retinal apelin/APJ mRNAs were transiently upregulated during the first 2 postnatal weeks but were undetectable in adults. There were no differences in VEGF or FGF2 mRNA expression, or in the morphology and localization of GFAP-positive astrocytes, in the apelin-KO retinas at P5. The corneal pocket assay showed that angiogenic responses to VEGF and FGF2 were remarkably decreased in apelin-KO mice. The reduced responses to VEGF and FGF2 in apelin-KO mice were partially restored by apelin, but apelin alone did not induce angiogenesis.
CONCLUSIONS—Our results suggest that spatiotemporally regulated apelin/APJ signaling participates in retinal vascularization in a cooperative manner with VEGF or FGF2, and contributes to normal ocular development. |
doi_str_mv | 10.1161/ATVBAHA.108.163402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69569115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69569115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5708-4f1f1160ce6ca57c5764ccda913f1bf35ad4f071f47d1b821bb5f3202f8607243</originalsourceid><addsrcrecordid>eNpFkU9r3DAQxUVpaf71C-QQfGlv3s7IkiwfnWybFFIKIc1VyLJElGjtjWQn9NtXZk17Gc0bfvMYngg5R9ggCvza3j9ctjftBkFuUFQM6DtyjJyykolKvM891E3JBaNH5CSlJwBglMJHcoSSN40Eeky2d3bSsdeTH4didEWWftCheNDJzEHHYmtfbRj3OztMhR-Kdm-DH8qtdd74ZfbTG3tGPjgdkv20vqfk9_dv91c35e2v6x9X7W1peA2yZA5dPhyMFUbzOg8FM6bXDVYOO1dx3TMHNTpW99hJil3HXUWBOimgpqw6JV8Ovvs4vsw2TWrnk7Eh6MGOc1Ki4aJB5BmkB9DEMaVondpHv9Pxj0JQS3ZqzS5rqQ7Z5aWL1X3udrb_v7KGlYHPK5DD0cFFPRif_nEUhMxOC8cO3NsYJhvTc5jfbFSPVofpUS2_UAngJQWQmBWUS5HVX90ahcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69569115</pqid></control><display><type>article</type><title>Retardation of Retinal Vascular Development in Apelin-Deficient Mice</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Kasai, Atsushi ; Shintani, Norihito ; Kato, Hideaki ; Matsuda, Satoshi ; Gomi, Fumi ; Haba, Ryota ; Hashimoto, Hitoshi ; Kakuda, Michiya ; Tano, Yasuo ; Baba, Akemichi</creator><creatorcontrib>Kasai, Atsushi ; Shintani, Norihito ; Kato, Hideaki ; Matsuda, Satoshi ; Gomi, Fumi ; Haba, Ryota ; Hashimoto, Hitoshi ; Kakuda, Michiya ; Tano, Yasuo ; Baba, Akemichi</creatorcontrib><description>OBJECTIVE—Apelin is an endogenous ligand for the G protein–coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice.
METHODS AND RESULTS—Apelin-KO mice showed impaired retinal vascularization and ocular development, which were analyzed by histology, immunohistochemistry, real-time polymerase chain reaction, and the mouse corneal micropocket assay. Apelin-KO mice showed significantly impaired retinal vascularization in the early postnatal period. Retinal apelin/APJ mRNAs were transiently upregulated during the first 2 postnatal weeks but were undetectable in adults. There were no differences in VEGF or FGF2 mRNA expression, or in the morphology and localization of GFAP-positive astrocytes, in the apelin-KO retinas at P5. The corneal pocket assay showed that angiogenic responses to VEGF and FGF2 were remarkably decreased in apelin-KO mice. The reduced responses to VEGF and FGF2 in apelin-KO mice were partially restored by apelin, but apelin alone did not induce angiogenesis.
CONCLUSIONS—Our results suggest that spatiotemporally regulated apelin/APJ signaling participates in retinal vascularization in a cooperative manner with VEGF or FGF2, and contributes to normal ocular development.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.108.163402</identifier><identifier>PMID: 18599802</identifier><identifier>CODEN: ATVBFA</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Adipokines ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Animals, Newborn ; Apelin ; Apelin Receptors ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Capillaries - metabolism ; Cardiology. Vascular system ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cornea - blood supply ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Emergency and intensive care: renal failure. Dialysis management ; Fibroblast Growth Factor 2 - metabolism ; Gene Expression Regulation, Developmental ; Genotype ; Immunohistochemistry ; Intensive care medicine ; Intercellular Signaling Peptides and Proteins ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neovascularization, Physiologic - genetics ; Phenotype ; Receptor, TIE-2 - metabolism ; Receptors, G-Protein-Coupled - metabolism ; Retinal Vessels - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Signal Transduction ; Time Factors ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2008-10, Vol.28 (10), p.1717-1722</ispartof><rights>2008 American Heart Association, Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5708-4f1f1160ce6ca57c5764ccda913f1bf35ad4f071f47d1b821bb5f3202f8607243</citedby><cites>FETCH-LOGICAL-c5708-4f1f1160ce6ca57c5764ccda913f1bf35ad4f071f47d1b821bb5f3202f8607243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20686342$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18599802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasai, Atsushi</creatorcontrib><creatorcontrib>Shintani, Norihito</creatorcontrib><creatorcontrib>Kato, Hideaki</creatorcontrib><creatorcontrib>Matsuda, Satoshi</creatorcontrib><creatorcontrib>Gomi, Fumi</creatorcontrib><creatorcontrib>Haba, Ryota</creatorcontrib><creatorcontrib>Hashimoto, Hitoshi</creatorcontrib><creatorcontrib>Kakuda, Michiya</creatorcontrib><creatorcontrib>Tano, Yasuo</creatorcontrib><creatorcontrib>Baba, Akemichi</creatorcontrib><title>Retardation of Retinal Vascular Development in Apelin-Deficient Mice</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Apelin is an endogenous ligand for the G protein–coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice.
METHODS AND RESULTS—Apelin-KO mice showed impaired retinal vascularization and ocular development, which were analyzed by histology, immunohistochemistry, real-time polymerase chain reaction, and the mouse corneal micropocket assay. Apelin-KO mice showed significantly impaired retinal vascularization in the early postnatal period. Retinal apelin/APJ mRNAs were transiently upregulated during the first 2 postnatal weeks but were undetectable in adults. There were no differences in VEGF or FGF2 mRNA expression, or in the morphology and localization of GFAP-positive astrocytes, in the apelin-KO retinas at P5. The corneal pocket assay showed that angiogenic responses to VEGF and FGF2 were remarkably decreased in apelin-KO mice. The reduced responses to VEGF and FGF2 in apelin-KO mice were partially restored by apelin, but apelin alone did not induce angiogenesis.
CONCLUSIONS—Our results suggest that spatiotemporally regulated apelin/APJ signaling participates in retinal vascularization in a cooperative manner with VEGF or FGF2, and contributes to normal ocular development.</description><subject>Adipokines</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apelin</subject><subject>Apelin Receptors</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Capillaries - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cornea - blood supply</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Emergency and intensive care: renal failure. Dialysis management</subject><subject>Fibroblast Growth Factor 2 - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype</subject><subject>Immunohistochemistry</subject><subject>Intensive care medicine</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Phenotype</subject><subject>Receptor, TIE-2 - metabolism</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Retinal Vessels - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU9r3DAQxUVpaf71C-QQfGlv3s7IkiwfnWybFFIKIc1VyLJElGjtjWQn9NtXZk17Gc0bfvMYngg5R9ggCvza3j9ctjftBkFuUFQM6DtyjJyykolKvM891E3JBaNH5CSlJwBglMJHcoSSN40Eeky2d3bSsdeTH4didEWWftCheNDJzEHHYmtfbRj3OztMhR-Kdm-DH8qtdd74ZfbTG3tGPjgdkv20vqfk9_dv91c35e2v6x9X7W1peA2yZA5dPhyMFUbzOg8FM6bXDVYOO1dx3TMHNTpW99hJil3HXUWBOimgpqw6JV8Ovvs4vsw2TWrnk7Eh6MGOc1Ki4aJB5BmkB9DEMaVondpHv9Pxj0JQS3ZqzS5rqQ7Z5aWL1X3udrb_v7KGlYHPK5DD0cFFPRif_nEUhMxOC8cO3NsYJhvTc5jfbFSPVofpUS2_UAngJQWQmBWUS5HVX90ahcI</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Kasai, Atsushi</creator><creator>Shintani, Norihito</creator><creator>Kato, Hideaki</creator><creator>Matsuda, Satoshi</creator><creator>Gomi, Fumi</creator><creator>Haba, Ryota</creator><creator>Hashimoto, Hitoshi</creator><creator>Kakuda, Michiya</creator><creator>Tano, Yasuo</creator><creator>Baba, Akemichi</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200810</creationdate><title>Retardation of Retinal Vascular Development in Apelin-Deficient Mice</title><author>Kasai, Atsushi ; Shintani, Norihito ; Kato, Hideaki ; Matsuda, Satoshi ; Gomi, Fumi ; Haba, Ryota ; Hashimoto, Hitoshi ; Kakuda, Michiya ; Tano, Yasuo ; Baba, Akemichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5708-4f1f1160ce6ca57c5764ccda913f1bf35ad4f071f47d1b821bb5f3202f8607243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adipokines</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apelin</topic><topic>Apelin Receptors</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Capillaries - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cornea - blood supply</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Emergency and intensive care: renal failure. Dialysis management</topic><topic>Fibroblast Growth Factor 2 - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype</topic><topic>Immunohistochemistry</topic><topic>Intensive care medicine</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Phenotype</topic><topic>Receptor, TIE-2 - metabolism</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Retinal Vessels - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasai, Atsushi</creatorcontrib><creatorcontrib>Shintani, Norihito</creatorcontrib><creatorcontrib>Kato, Hideaki</creatorcontrib><creatorcontrib>Matsuda, Satoshi</creatorcontrib><creatorcontrib>Gomi, Fumi</creatorcontrib><creatorcontrib>Haba, Ryota</creatorcontrib><creatorcontrib>Hashimoto, Hitoshi</creatorcontrib><creatorcontrib>Kakuda, Michiya</creatorcontrib><creatorcontrib>Tano, Yasuo</creatorcontrib><creatorcontrib>Baba, Akemichi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasai, Atsushi</au><au>Shintani, Norihito</au><au>Kato, Hideaki</au><au>Matsuda, Satoshi</au><au>Gomi, Fumi</au><au>Haba, Ryota</au><au>Hashimoto, Hitoshi</au><au>Kakuda, Michiya</au><au>Tano, Yasuo</au><au>Baba, Akemichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retardation of Retinal Vascular Development in Apelin-Deficient Mice</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2008-10</date><risdate>2008</risdate><volume>28</volume><issue>10</issue><spage>1717</spage><epage>1722</epage><pages>1717-1722</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><coden>ATVBFA</coden><abstract>OBJECTIVE—Apelin is an endogenous ligand for the G protein–coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice.
METHODS AND RESULTS—Apelin-KO mice showed impaired retinal vascularization and ocular development, which were analyzed by histology, immunohistochemistry, real-time polymerase chain reaction, and the mouse corneal micropocket assay. Apelin-KO mice showed significantly impaired retinal vascularization in the early postnatal period. Retinal apelin/APJ mRNAs were transiently upregulated during the first 2 postnatal weeks but were undetectable in adults. There were no differences in VEGF or FGF2 mRNA expression, or in the morphology and localization of GFAP-positive astrocytes, in the apelin-KO retinas at P5. The corneal pocket assay showed that angiogenic responses to VEGF and FGF2 were remarkably decreased in apelin-KO mice. The reduced responses to VEGF and FGF2 in apelin-KO mice were partially restored by apelin, but apelin alone did not induce angiogenesis.
CONCLUSIONS—Our results suggest that spatiotemporally regulated apelin/APJ signaling participates in retinal vascularization in a cooperative manner with VEGF or FGF2, and contributes to normal ocular development.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>18599802</pmid><doi>10.1161/ATVBAHA.108.163402</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2008-10, Vol.28 (10), p.1717-1722 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_69569115 |
source | MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete |
subjects | Adipokines Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Animals, Newborn Apelin Apelin Receptors Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Capillaries - metabolism Cardiology. Vascular system Carrier Proteins - genetics Carrier Proteins - metabolism Cornea - blood supply Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Emergency and intensive care: renal failure. Dialysis management Fibroblast Growth Factor 2 - metabolism Gene Expression Regulation, Developmental Genotype Immunohistochemistry Intensive care medicine Intercellular Signaling Peptides and Proteins Medical sciences Mice Mice, Inbred C57BL Mice, Knockout Neovascularization, Physiologic - genetics Phenotype Receptor, TIE-2 - metabolism Receptors, G-Protein-Coupled - metabolism Retinal Vessels - metabolism Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism Signal Transduction Time Factors Vascular Endothelial Growth Factor A - metabolism |
title | Retardation of Retinal Vascular Development in Apelin-Deficient Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retardation%20of%20Retinal%20Vascular%20Development%20in%20Apelin-Deficient%20Mice&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Kasai,%20Atsushi&rft.date=2008-10&rft.volume=28&rft.issue=10&rft.spage=1717&rft.epage=1722&rft.pages=1717-1722&rft.issn=1079-5642&rft.eissn=1524-4636&rft.coden=ATVBFA&rft_id=info:doi/10.1161/ATVBAHA.108.163402&rft_dat=%3Cproquest_cross%3E69569115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69569115&rft_id=info:pmid/18599802&rfr_iscdi=true |