Greedy rule generation from discrete data and its use in neural network rule extraction

This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2008-09, Vol.21 (7), p.1020-1028
Hauptverfasser: Odajima, Koichi, Hayashi, Yoichi, Tianxia, Gong, Setiono, Rudy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 7
container_start_page 1020
container_title Neural networks
container_volume 21
creator Odajima, Koichi
Hayashi, Yoichi
Tianxia, Gong
Setiono, Rudy
description This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.
doi_str_mv 10.1016/j.neunet.2008.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69547143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608008000580</els_id><sourcerecordid>69547143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</originalsourceid><addsrcrecordid>eNqFkMFu1DAQQC0EokvLH1TIF7gljGMndi6VqgoKUiUuoB4trz1G3mad1naA_j1esoJbOc3lzZvRI-ScQcuADe93bcQlYmk7ANUCawH4M7JhSo5NJ1X3nGxAjbwZQMEJeZXzDgAGJfhLcsKUEJ0axYbcXidE90jTMiH9jhGTKWGO1Kd5T13INmFB6kwx1ERHQ8l0yUhDpPV6MlMd5eec7lYB_irJ2IPgjLzwZsr4-jhPybePH75efWpuvlx_vrq8aaxQsjQcvXNMdKLz0nnme2G5ZEKis1spHHZWeHByO6iBs0HY0XPDezHIkTnnleSn5N3qvU_zw4K56H19GqfJRJyXrIexF1XI_wuyUYDqmaqgWEGb5pwTen2fwt6kR81AH8rrnV7L60N5DUzX8nXtzdG_bPfo_i0dU1fg7REw2ZrJJxNtyH-5DmTfsz_cxcphzfYjYNLZBowWXUhoi3ZzePqT3121pCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19408518</pqid></control><display><type>article</type><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</creator><creatorcontrib>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</creatorcontrib><description>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2008.01.003</identifier><identifier>PMID: 18442894</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Classification ; Clustering ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data Interpretation, Statistical ; Discretization ; Exact sciences and technology ; Flowers - classification ; Humans ; Information, signal and communications theory ; Neoplasms - classification ; Neural networks ; Neural Networks (Computer) ; Reproducibility of Results ; Rule generation ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Software ; Telecommunications and information theory</subject><ispartof>Neural networks, 2008-09, Vol.21 (7), p.1020-1028</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</citedby><cites>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2008.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20755194$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18442894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odajima, Koichi</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><creatorcontrib>Tianxia, Gong</creatorcontrib><creatorcontrib>Setiono, Rudy</creatorcontrib><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data Interpretation, Statistical</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Flowers - classification</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Neoplasms - classification</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Reproducibility of Results</subject><subject>Rule generation</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu1DAQQC0EokvLH1TIF7gljGMndi6VqgoKUiUuoB4trz1G3mad1naA_j1esoJbOc3lzZvRI-ScQcuADe93bcQlYmk7ANUCawH4M7JhSo5NJ1X3nGxAjbwZQMEJeZXzDgAGJfhLcsKUEJ0axYbcXidE90jTMiH9jhGTKWGO1Kd5T13INmFB6kwx1ERHQ8l0yUhDpPV6MlMd5eec7lYB_irJ2IPgjLzwZsr4-jhPybePH75efWpuvlx_vrq8aaxQsjQcvXNMdKLz0nnme2G5ZEKis1spHHZWeHByO6iBs0HY0XPDezHIkTnnleSn5N3qvU_zw4K56H19GqfJRJyXrIexF1XI_wuyUYDqmaqgWEGb5pwTen2fwt6kR81AH8rrnV7L60N5DUzX8nXtzdG_bPfo_i0dU1fg7REw2ZrJJxNtyH-5DmTfsz_cxcphzfYjYNLZBowWXUhoi3ZzePqT3121pCM</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Odajima, Koichi</creator><creator>Hayashi, Yoichi</creator><creator>Tianxia, Gong</creator><creator>Setiono, Rudy</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><author>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data Interpretation, Statistical</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Flowers - classification</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Neoplasms - classification</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Reproducibility of Results</topic><topic>Rule generation</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odajima, Koichi</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><creatorcontrib>Tianxia, Gong</creatorcontrib><creatorcontrib>Setiono, Rudy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odajima, Koichi</au><au>Hayashi, Yoichi</au><au>Tianxia, Gong</au><au>Setiono, Rudy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greedy rule generation from discrete data and its use in neural network rule extraction</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>21</volume><issue>7</issue><spage>1020</spage><epage>1028</epage><pages>1020-1028</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18442894</pmid><doi>10.1016/j.neunet.2008.01.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2008-09, Vol.21 (7), p.1020-1028
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_69547143
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Applied sciences
Artificial Intelligence
Classification
Clustering
Computer science
control theory
systems
Connectionism. Neural networks
Data Interpretation, Statistical
Discretization
Exact sciences and technology
Flowers - classification
Humans
Information, signal and communications theory
Neoplasms - classification
Neural networks
Neural Networks (Computer)
Reproducibility of Results
Rule generation
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Software
Telecommunications and information theory
title Greedy rule generation from discrete data and its use in neural network rule extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greedy%20rule%20generation%20from%20discrete%20data%20and%20its%20use%20in%20neural%20network%20rule%20extraction&rft.jtitle=Neural%20networks&rft.au=Odajima,%20Koichi&rft.date=2008-09-01&rft.volume=21&rft.issue=7&rft.spage=1020&rft.epage=1028&rft.pages=1020-1028&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2008.01.003&rft_dat=%3Cproquest_cross%3E69547143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19408518&rft_id=info:pmid/18442894&rft_els_id=S0893608008000580&rfr_iscdi=true