Greedy rule generation from discrete data and its use in neural network rule extraction
This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include t...
Gespeichert in:
Veröffentlicht in: | Neural networks 2008-09, Vol.21 (7), p.1020-1028 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 7 |
container_start_page | 1020 |
container_title | Neural networks |
container_volume | 21 |
creator | Odajima, Koichi Hayashi, Yoichi Tianxia, Gong Setiono, Rudy |
description | This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard
decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation. |
doi_str_mv | 10.1016/j.neunet.2008.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69547143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608008000580</els_id><sourcerecordid>69547143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</originalsourceid><addsrcrecordid>eNqFkMFu1DAQQC0EokvLH1TIF7gljGMndi6VqgoKUiUuoB4trz1G3mad1naA_j1esoJbOc3lzZvRI-ScQcuADe93bcQlYmk7ANUCawH4M7JhSo5NJ1X3nGxAjbwZQMEJeZXzDgAGJfhLcsKUEJ0axYbcXidE90jTMiH9jhGTKWGO1Kd5T13INmFB6kwx1ERHQ8l0yUhDpPV6MlMd5eec7lYB_irJ2IPgjLzwZsr4-jhPybePH75efWpuvlx_vrq8aaxQsjQcvXNMdKLz0nnme2G5ZEKis1spHHZWeHByO6iBs0HY0XPDezHIkTnnleSn5N3qvU_zw4K56H19GqfJRJyXrIexF1XI_wuyUYDqmaqgWEGb5pwTen2fwt6kR81AH8rrnV7L60N5DUzX8nXtzdG_bPfo_i0dU1fg7REw2ZrJJxNtyH-5DmTfsz_cxcphzfYjYNLZBowWXUhoi3ZzePqT3121pCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19408518</pqid></control><display><type>article</type><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</creator><creatorcontrib>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</creatorcontrib><description>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard
decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2008.01.003</identifier><identifier>PMID: 18442894</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Classification ; Clustering ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data Interpretation, Statistical ; Discretization ; Exact sciences and technology ; Flowers - classification ; Humans ; Information, signal and communications theory ; Neoplasms - classification ; Neural networks ; Neural Networks (Computer) ; Reproducibility of Results ; Rule generation ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Software ; Telecommunications and information theory</subject><ispartof>Neural networks, 2008-09, Vol.21 (7), p.1020-1028</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</citedby><cites>FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2008.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20755194$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18442894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odajima, Koichi</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><creatorcontrib>Tianxia, Gong</creatorcontrib><creatorcontrib>Setiono, Rudy</creatorcontrib><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard
decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data Interpretation, Statistical</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Flowers - classification</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Neoplasms - classification</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Reproducibility of Results</subject><subject>Rule generation</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu1DAQQC0EokvLH1TIF7gljGMndi6VqgoKUiUuoB4trz1G3mad1naA_j1esoJbOc3lzZvRI-ScQcuADe93bcQlYmk7ANUCawH4M7JhSo5NJ1X3nGxAjbwZQMEJeZXzDgAGJfhLcsKUEJ0axYbcXidE90jTMiH9jhGTKWGO1Kd5T13INmFB6kwx1ERHQ8l0yUhDpPV6MlMd5eec7lYB_irJ2IPgjLzwZsr4-jhPybePH75efWpuvlx_vrq8aaxQsjQcvXNMdKLz0nnme2G5ZEKis1spHHZWeHByO6iBs0HY0XPDezHIkTnnleSn5N3qvU_zw4K56H19GqfJRJyXrIexF1XI_wuyUYDqmaqgWEGb5pwTen2fwt6kR81AH8rrnV7L60N5DUzX8nXtzdG_bPfo_i0dU1fg7REw2ZrJJxNtyH-5DmTfsz_cxcphzfYjYNLZBowWXUhoi3ZzePqT3121pCM</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Odajima, Koichi</creator><creator>Hayashi, Yoichi</creator><creator>Tianxia, Gong</creator><creator>Setiono, Rudy</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Greedy rule generation from discrete data and its use in neural network rule extraction</title><author>Odajima, Koichi ; Hayashi, Yoichi ; Tianxia, Gong ; Setiono, Rudy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3efdd14242f7df1f54c37147edcb74de2c4f0d7b6863164c9f3a3546791ddf873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data Interpretation, Statistical</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Flowers - classification</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Neoplasms - classification</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Reproducibility of Results</topic><topic>Rule generation</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odajima, Koichi</creatorcontrib><creatorcontrib>Hayashi, Yoichi</creatorcontrib><creatorcontrib>Tianxia, Gong</creatorcontrib><creatorcontrib>Setiono, Rudy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odajima, Koichi</au><au>Hayashi, Yoichi</au><au>Tianxia, Gong</au><au>Setiono, Rudy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greedy rule generation from discrete data and its use in neural network rule extraction</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>21</volume><issue>7</issue><spage>1020</spage><epage>1028</epage><pages>1020-1028</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard
decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18442894</pmid><doi>10.1016/j.neunet.2008.01.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2008-09, Vol.21 (7), p.1020-1028 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_69547143 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Applied sciences Artificial Intelligence Classification Clustering Computer science control theory systems Connectionism. Neural networks Data Interpretation, Statistical Discretization Exact sciences and technology Flowers - classification Humans Information, signal and communications theory Neoplasms - classification Neural networks Neural Networks (Computer) Reproducibility of Results Rule generation Signal and communications theory Signal representation. Spectral analysis Signal, noise Software Telecommunications and information theory |
title | Greedy rule generation from discrete data and its use in neural network rule extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greedy%20rule%20generation%20from%20discrete%20data%20and%20its%20use%20in%20neural%20network%20rule%20extraction&rft.jtitle=Neural%20networks&rft.au=Odajima,%20Koichi&rft.date=2008-09-01&rft.volume=21&rft.issue=7&rft.spage=1020&rft.epage=1028&rft.pages=1020-1028&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2008.01.003&rft_dat=%3Cproquest_cross%3E69547143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19408518&rft_id=info:pmid/18442894&rft_els_id=S0893608008000580&rfr_iscdi=true |