Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models
The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent popul...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2008-12, Vol.57 (6), p.755-790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 790 |
---|---|
container_issue | 6 |
container_start_page | 755 |
container_title | Journal of mathematical biology |
container_volume | 57 |
creator | Franke, John E. Yakubu, Abdul-Aziz |
description | The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics. |
doi_str_mv | 10.1007/s00285-008-0188-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69537005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69537005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-995a44accd1203a8a9ac1e3611c65e5b6c043dff190d0753b720bc25cef68f243</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMo9rb6A9zI4MJd9Jx8TbKUVmuhIFhdh9zkjKTMxzWZWfTfm3IvKIK4SkKe9z0JD2OvEN4hQP--AgirOYDlgNZy94TtUEnBUaF5ynYgQXJjUZyx81rvAbDXDp-zM7RGGKP0jn29ypVCJZ7ntEVK3bSUNYx5fejy3CWaa9vyRAea22HtUq6x0Ep8zRN1d_yG33V0yImmHFs20VhfsGdDGCu9PK0X7Punj98uP_PbL9c3lx9ueVQAK3dOB6VCjAkFyGCDCxFJGsRoNOm9iaBkGgZ0kKDXct8L2EehIw3GDkLJC_b22Hsoy8-N6uqn9jgaxzDTslVvnJY9gP4vKFCqXlps4Ju_wPtlK3P7hEfnHPbO2AbhEYplqbXQ4A8lT6E8eAT_qMUftfimxT9q8a5lXp-Kt_1E6Xfi5KEB4gjUdjX_oPLH5H-2_gIl8pb9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199917968</pqid></control><display><type>article</type><title>Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Franke, John E. ; Yakubu, Abdul-Aziz</creator><creatorcontrib>Franke, John E. ; Yakubu, Abdul-Aziz</creatorcontrib><description>The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-008-0188-9</identifier><identifier>PMID: 18626645</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applications of Mathematics ; Biometry ; Disease ; Disease Outbreaks - statistics & numerical data ; Humans ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Statistical ; Mortality</subject><ispartof>Journal of mathematical biology, 2008-12, Vol.57 (6), p.755-790</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-995a44accd1203a8a9ac1e3611c65e5b6c043dff190d0753b720bc25cef68f243</citedby><cites>FETCH-LOGICAL-c400t-995a44accd1203a8a9ac1e3611c65e5b6c043dff190d0753b720bc25cef68f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-008-0188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-008-0188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18626645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franke, John E.</creatorcontrib><creatorcontrib>Yakubu, Abdul-Aziz</creatorcontrib><title>Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.</description><subject>Applications of Mathematics</subject><subject>Biometry</subject><subject>Disease</subject><subject>Disease Outbreaks - statistics & numerical data</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Statistical</subject><subject>Mortality</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1rFTEUhoMo9rb6A9zI4MJd9Jx8TbKUVmuhIFhdh9zkjKTMxzWZWfTfm3IvKIK4SkKe9z0JD2OvEN4hQP--AgirOYDlgNZy94TtUEnBUaF5ynYgQXJjUZyx81rvAbDXDp-zM7RGGKP0jn29ypVCJZ7ntEVK3bSUNYx5fejy3CWaa9vyRAea22HtUq6x0Ep8zRN1d_yG33V0yImmHFs20VhfsGdDGCu9PK0X7Punj98uP_PbL9c3lx9ueVQAK3dOB6VCjAkFyGCDCxFJGsRoNOm9iaBkGgZ0kKDXct8L2EehIw3GDkLJC_b22Hsoy8-N6uqn9jgaxzDTslVvnJY9gP4vKFCqXlps4Ju_wPtlK3P7hEfnHPbO2AbhEYplqbXQ4A8lT6E8eAT_qMUftfimxT9q8a5lXp-Kt_1E6Xfi5KEB4gjUdjX_oPLH5H-2_gIl8pb9</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Franke, John E.</creator><creator>Yakubu, Abdul-Aziz</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models</title><author>Franke, John E. ; Yakubu, Abdul-Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-995a44accd1203a8a9ac1e3611c65e5b6c043dff190d0753b720bc25cef68f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Biometry</topic><topic>Disease</topic><topic>Disease Outbreaks - statistics & numerical data</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Statistical</topic><topic>Mortality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, John E.</creatorcontrib><creatorcontrib>Yakubu, Abdul-Aziz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, John E.</au><au>Yakubu, Abdul-Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>57</volume><issue>6</issue><spage>755</spage><epage>790</epage><pages>755-790</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18626645</pmid><doi>10.1007/s00285-008-0188-9</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2008-12, Vol.57 (6), p.755-790 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_69537005 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Biometry Disease Disease Outbreaks - statistics & numerical data Humans Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Statistical Mortality |
title | Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease-induced%20mortality%20in%20density-dependent%20discrete-time%20S-I-S%20epidemic%20models&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Franke,%20John%20E.&rft.date=2008-12-01&rft.volume=57&rft.issue=6&rft.spage=755&rft.epage=790&rft.pages=755-790&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-008-0188-9&rft_dat=%3Cproquest_cross%3E69537005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199917968&rft_id=info:pmid/18626645&rfr_iscdi=true |