Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design
We introduce a novel algorithm for the design of fast slice-selective spatially-tailored magnetic resonance imaging (MRI) excitation pulses. This method, based on sparse approximation theory, uses a second-order cone optimization to place and modulate a small number of slice-selective sinc-like radi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2008-09, Vol.27 (9), p.1213-1229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1229 |
---|---|
container_issue | 9 |
container_start_page | 1213 |
container_title | IEEE transactions on medical imaging |
container_volume | 27 |
creator | Zelinski, Adam C. Wald, Lawrence L. Setsompop, Kawin Goyal, Vivek K Adalsteinsson, Elfar |
description | We introduce a novel algorithm for the design of fast slice-selective spatially-tailored magnetic resonance imaging (MRI) excitation pulses. This method, based on sparse approximation theory, uses a second-order cone optimization to place and modulate a small number of slice-selective sinc-like radio-frequency (RF) pulse segments ("spokes") in excitation k -space, enforcing sparsity on the number of spokes allowed while simultaneously encouraging those that remain to be placed and modulated in a way that best forms a user-defined in-plane target magnetization. Pulses are designed to mitigate B_{1} inhomogeneity in a water phantom at 7 T and to produce highly-structured excitations in an oil phantom on an eight-channel parallel excitation system at 3 T. In each experiment, pulses generated by the sparsity-enforced method outperform those created via conventional Fourier-based techniques, e.g., when attempting to produce a uniform magnetization in the presence of severe B_{1} inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method produces an excitation with 1.28 times lower root mean square error than conventionally-designed 15-spoke pulses. To achieve this same level of uniformity, the conventional methods need to use 29-spoke pulses that are 7.8 ms long. |
doi_str_mv | 10.1109/TMI.2008.920605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_69526319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4472021</ieee_id><sourcerecordid>869586721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-ed55cd92980eabb2d45841d2c8c20f5dd0958d3b3273828fe97480aaf2b4ab7c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCmQMSijiUU7bjie3YlwpUtrBSK1C3SNwsx5kUV9lkiZOK_nu82lX5OMDJsubxO555GHvBYc45mJPry-UcAfTcICiQj9iMS6lzlOLrYzYDLHUOoPCAHcZ4C8CFBPOUHXBdlgZUMWNvVxs3xDDe54uu6QdPdbZqg6d8RS35MdxRdnm1zK7Os8UPH0Y3hr7LPk9tpOw9xXDTPWNPGpeuz_fnEftyvrg--5hffPqwPHt3kXsJfMypltLXBo0GclWFtZBa8Bq99giNrGswUtdFVWBZaNQNmVJocK7BSriq9MURO93lbqZqTbWnbhxcazdDWLvh3vYu2D8rXfhmb_o7i0opAEwBb_YBQ_99ojjadYie2tZ11E_RapV-oErkiTz-J5lAVAU3_wW5EaiRb3u__gu87aehS_tKbbGUBsQ27WQH-aGPcaDmYTgOdmvbJtt2a9vubKcXr37fyS9-rzcBL3dAIKKHshAlQprzJ2EqrQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862759049</pqid></control><display><type>article</type><title>Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design</title><source>IEEE Electronic Library (IEL)</source><creator>Zelinski, Adam C. ; Wald, Lawrence L. ; Setsompop, Kawin ; Goyal, Vivek K ; Adalsteinsson, Elfar</creator><creatorcontrib>Zelinski, Adam C. ; Wald, Lawrence L. ; Setsompop, Kawin ; Goyal, Vivek K ; Adalsteinsson, Elfar</creatorcontrib><description>We introduce a novel algorithm for the design of fast slice-selective spatially-tailored magnetic resonance imaging (MRI) excitation pulses. This method, based on sparse approximation theory, uses a second-order cone optimization to place and modulate a small number of slice-selective sinc-like radio-frequency (RF) pulse segments ("spokes") in excitation k -space, enforcing sparsity on the number of spokes allowed while simultaneously encouraging those that remain to be placed and modulated in a way that best forms a user-defined in-plane target magnetization. Pulses are designed to mitigate B_{1} inhomogeneity in a water phantom at 7 T and to produce highly-structured excitations in an oil phantom on an eight-channel parallel excitation system at 3 T. In each experiment, pulses generated by the sparsity-enforced method outperform those created via conventional Fourier-based techniques, e.g., when attempting to produce a uniform magnetization in the presence of severe B_{1} inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method produces an excitation with 1.28 times lower root mean square error than conventionally-designed 15-spoke pulses. To achieve this same level of uniformity, the conventional methods need to use 29-spoke pulses that are 7.8 ms long.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2008.920605</identifier><identifier>PMID: 18779063</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Approximation methods ; B_{1} inhomogeneity mitigation ; Brain - anatomy & histology ; Design ; high field strength ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging phantoms ; Imaging, Three-Dimensional - methods ; Magnetic modulators ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) radio-frequency (RF) pulse sequence design ; Magnetic Resonance Imaging - methods ; Magnetization ; Mean square errors ; Optimization methods ; parallel transmission ; Pulse generation ; Pulse modulation ; Radio frequency ; Signal Processing, Computer-Assisted ; sparse approximation ; Sparsity ; three-dimensional (3-D) RF excitation</subject><ispartof>IEEE transactions on medical imaging, 2008-09, Vol.27 (9), p.1213-1229</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>2008 IEEE 2008</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-ed55cd92980eabb2d45841d2c8c20f5dd0958d3b3273828fe97480aaf2b4ab7c3</citedby><cites>FETCH-LOGICAL-c501t-ed55cd92980eabb2d45841d2c8c20f5dd0958d3b3273828fe97480aaf2b4ab7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4472021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4472021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18779063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zelinski, Adam C.</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><creatorcontrib>Goyal, Vivek K</creatorcontrib><creatorcontrib>Adalsteinsson, Elfar</creatorcontrib><title>Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We introduce a novel algorithm for the design of fast slice-selective spatially-tailored magnetic resonance imaging (MRI) excitation pulses. This method, based on sparse approximation theory, uses a second-order cone optimization to place and modulate a small number of slice-selective sinc-like radio-frequency (RF) pulse segments ("spokes") in excitation k -space, enforcing sparsity on the number of spokes allowed while simultaneously encouraging those that remain to be placed and modulated in a way that best forms a user-defined in-plane target magnetization. Pulses are designed to mitigate B_{1} inhomogeneity in a water phantom at 7 T and to produce highly-structured excitations in an oil phantom on an eight-channel parallel excitation system at 3 T. In each experiment, pulses generated by the sparsity-enforced method outperform those created via conventional Fourier-based techniques, e.g., when attempting to produce a uniform magnetization in the presence of severe B_{1} inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method produces an excitation with 1.28 times lower root mean square error than conventionally-designed 15-spoke pulses. To achieve this same level of uniformity, the conventional methods need to use 29-spoke pulses that are 7.8 ms long.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation methods</subject><subject>B_{1} inhomogeneity mitigation</subject><subject>Brain - anatomy & histology</subject><subject>Design</subject><subject>high field strength</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging phantoms</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic modulators</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI) radio-frequency (RF) pulse sequence design</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetization</subject><subject>Mean square errors</subject><subject>Optimization methods</subject><subject>parallel transmission</subject><subject>Pulse generation</subject><subject>Pulse modulation</subject><subject>Radio frequency</subject><subject>Signal Processing, Computer-Assisted</subject><subject>sparse approximation</subject><subject>Sparsity</subject><subject>three-dimensional (3-D) RF excitation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvCmQMSijiUU7bjie3YlwpUtrBSK1C3SNwsx5kUV9lkiZOK_nu82lX5OMDJsubxO555GHvBYc45mJPry-UcAfTcICiQj9iMS6lzlOLrYzYDLHUOoPCAHcZ4C8CFBPOUHXBdlgZUMWNvVxs3xDDe54uu6QdPdbZqg6d8RS35MdxRdnm1zK7Os8UPH0Y3hr7LPk9tpOw9xXDTPWNPGpeuz_fnEftyvrg--5hffPqwPHt3kXsJfMypltLXBo0GclWFtZBa8Bq99giNrGswUtdFVWBZaNQNmVJocK7BSriq9MURO93lbqZqTbWnbhxcazdDWLvh3vYu2D8rXfhmb_o7i0opAEwBb_YBQ_99ojjadYie2tZ11E_RapV-oErkiTz-J5lAVAU3_wW5EaiRb3u__gu87aehS_tKbbGUBsQ27WQH-aGPcaDmYTgOdmvbJtt2a9vubKcXr37fyS9-rzcBL3dAIKKHshAlQprzJ2EqrQw</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Zelinski, Adam C.</creator><creator>Wald, Lawrence L.</creator><creator>Setsompop, Kawin</creator><creator>Goyal, Vivek K</creator><creator>Adalsteinsson, Elfar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080901</creationdate><title>Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design</title><author>Zelinski, Adam C. ; Wald, Lawrence L. ; Setsompop, Kawin ; Goyal, Vivek K ; Adalsteinsson, Elfar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-ed55cd92980eabb2d45841d2c8c20f5dd0958d3b3273828fe97480aaf2b4ab7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation methods</topic><topic>B_{1} inhomogeneity mitigation</topic><topic>Brain - anatomy & histology</topic><topic>Design</topic><topic>high field strength</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging phantoms</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic modulators</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI) radio-frequency (RF) pulse sequence design</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetization</topic><topic>Mean square errors</topic><topic>Optimization methods</topic><topic>parallel transmission</topic><topic>Pulse generation</topic><topic>Pulse modulation</topic><topic>Radio frequency</topic><topic>Signal Processing, Computer-Assisted</topic><topic>sparse approximation</topic><topic>Sparsity</topic><topic>three-dimensional (3-D) RF excitation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zelinski, Adam C.</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><creatorcontrib>Goyal, Vivek K</creatorcontrib><creatorcontrib>Adalsteinsson, Elfar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zelinski, Adam C.</au><au>Wald, Lawrence L.</au><au>Setsompop, Kawin</au><au>Goyal, Vivek K</au><au>Adalsteinsson, Elfar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>27</volume><issue>9</issue><spage>1213</spage><epage>1229</epage><pages>1213-1229</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We introduce a novel algorithm for the design of fast slice-selective spatially-tailored magnetic resonance imaging (MRI) excitation pulses. This method, based on sparse approximation theory, uses a second-order cone optimization to place and modulate a small number of slice-selective sinc-like radio-frequency (RF) pulse segments ("spokes") in excitation k -space, enforcing sparsity on the number of spokes allowed while simultaneously encouraging those that remain to be placed and modulated in a way that best forms a user-defined in-plane target magnetization. Pulses are designed to mitigate B_{1} inhomogeneity in a water phantom at 7 T and to produce highly-structured excitations in an oil phantom on an eight-channel parallel excitation system at 3 T. In each experiment, pulses generated by the sparsity-enforced method outperform those created via conventional Fourier-based techniques, e.g., when attempting to produce a uniform magnetization in the presence of severe B_{1} inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method produces an excitation with 1.28 times lower root mean square error than conventionally-designed 15-spoke pulses. To achieve this same level of uniformity, the conventional methods need to use 29-spoke pulses that are 7.8 ms long.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18779063</pmid><doi>10.1109/TMI.2008.920605</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2008-09, Vol.27 (9), p.1213-1229 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_69526319 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Approximation methods B_{1} inhomogeneity mitigation Brain - anatomy & histology Design high field strength Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging phantoms Imaging, Three-Dimensional - methods Magnetic modulators Magnetic resonance imaging magnetic resonance imaging (MRI) radio-frequency (RF) pulse sequence design Magnetic Resonance Imaging - methods Magnetization Mean square errors Optimization methods parallel transmission Pulse generation Pulse modulation Radio frequency Signal Processing, Computer-Assisted sparse approximation Sparsity three-dimensional (3-D) RF excitation |
title | Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparsity-Enforced%20Slice-Selective%20MRI%20RF%20Excitation%20Pulse%20Design&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zelinski,%20Adam%20C.&rft.date=2008-09-01&rft.volume=27&rft.issue=9&rft.spage=1213&rft.epage=1229&rft.pages=1213-1229&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2008.920605&rft_dat=%3Cproquest_RIE%3E869586721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862759049&rft_id=info:pmid/18779063&rft_ieee_id=4472021&rfr_iscdi=true |