A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion
There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb ni...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2008-09, Vol.47 (37), p.9793-9802 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9802 |
---|---|
container_issue | 37 |
container_start_page | 9793 |
container_title | Biochemistry (Easton) |
container_volume | 47 |
creator | Perissinotti, Laura L Marti, Marcelo A Doctorovich, Fabio Luque, F. Javier Estrin, Dario A |
description | There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO. |
doi_str_mv | 10.1021/bi801104c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69525356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69525356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</originalsourceid><addsrcrecordid>eNpt0Etv3CAQB3AUtWo2aQ_9ApEvrZSDGzAGzHG1efSRR9VN1CPCeJyQ2GYLWNrNpy8rr5JLTmjgN4Pmj9Bngr8RXJCT2laYEFyaPTQjrMB5KSV7h2YYY54XkuN9dBDCYypLLMoPaJ9Ugggm5QzV8-zKGu-CcStrsmUcm03m2iw-QHYKbr15gN7dd662Q77QUXebZ2iyCxjA62jdsLXXNvrUe7O2DWStd_10EyGbD4l8RO9b3QX4tDsP0d352e3ie355c_FjMb_MdUlEzIXRNaek0RJoyTjXxrS0YrI0FS2akoIsoK4opabSLWkEpCWxwabgjZHCSHqIvk5zV979GyFE1dtgoOv0AG4MiktWMMp4gscT3O4dPLRq5W2v_UYRrLaBqpdAkz3aDR3rHppXuUswgXwCNkRYv7xr_6S4oIKp299Lxc5P_7C_v5bqZ_JfJq9NUI9u9EPK5I2P_wOn6owY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69525356</pqid></control><display><type>article</type><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><source>MEDLINE</source><source>ACS Publications</source><creator>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</creator><creatorcontrib>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</creatorcontrib><description>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi801104c</identifier><identifier>PMID: 18717599</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions - chemistry ; Anions - metabolism ; Binding Sites ; Catalysis ; Hemoglobins - chemistry ; Hemoglobins - metabolism ; Histidine - chemistry ; Histidine - metabolism ; Humans ; Ligands ; Models, Molecular ; Nitric Oxide - chemistry ; Nitric Oxide - metabolism ; Nitrite Reductases - chemistry ; Nitrite Reductases - metabolism ; Nitrites - chemistry ; Nitrites - metabolism ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 2008-09, Vol.47 (37), p.9793-9802</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</citedby><cites>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi801104c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi801104c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18717599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perissinotti, Laura L</creatorcontrib><creatorcontrib>Marti, Marcelo A</creatorcontrib><creatorcontrib>Doctorovich, Fabio</creatorcontrib><creatorcontrib>Luque, F. Javier</creatorcontrib><creatorcontrib>Estrin, Dario A</creatorcontrib><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</description><subject>Anions - chemistry</subject><subject>Anions - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Hemoglobins - chemistry</subject><subject>Hemoglobins - metabolism</subject><subject>Histidine - chemistry</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Nitric Oxide - chemistry</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrite Reductases - chemistry</subject><subject>Nitrite Reductases - metabolism</subject><subject>Nitrites - chemistry</subject><subject>Nitrites - metabolism</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0Etv3CAQB3AUtWo2aQ_9ApEvrZSDGzAGzHG1efSRR9VN1CPCeJyQ2GYLWNrNpy8rr5JLTmjgN4Pmj9Bngr8RXJCT2laYEFyaPTQjrMB5KSV7h2YYY54XkuN9dBDCYypLLMoPaJ9Ugggm5QzV8-zKGu-CcStrsmUcm03m2iw-QHYKbr15gN7dd662Q77QUXebZ2iyCxjA62jdsLXXNvrUe7O2DWStd_10EyGbD4l8RO9b3QX4tDsP0d352e3ie355c_FjMb_MdUlEzIXRNaek0RJoyTjXxrS0YrI0FS2akoIsoK4opabSLWkEpCWxwabgjZHCSHqIvk5zV979GyFE1dtgoOv0AG4MiktWMMp4gscT3O4dPLRq5W2v_UYRrLaBqpdAkz3aDR3rHppXuUswgXwCNkRYv7xr_6S4oIKp299Lxc5P_7C_v5bqZ_JfJq9NUI9u9EPK5I2P_wOn6owY</recordid><startdate>20080916</startdate><enddate>20080916</enddate><creator>Perissinotti, Laura L</creator><creator>Marti, Marcelo A</creator><creator>Doctorovich, Fabio</creator><creator>Luque, F. Javier</creator><creator>Estrin, Dario A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080916</creationdate><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><author>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anions - chemistry</topic><topic>Anions - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Hemoglobins - chemistry</topic><topic>Hemoglobins - metabolism</topic><topic>Histidine - chemistry</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Nitric Oxide - chemistry</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrite Reductases - chemistry</topic><topic>Nitrite Reductases - metabolism</topic><topic>Nitrites - chemistry</topic><topic>Nitrites - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perissinotti, Laura L</creatorcontrib><creatorcontrib>Marti, Marcelo A</creatorcontrib><creatorcontrib>Doctorovich, Fabio</creatorcontrib><creatorcontrib>Luque, F. Javier</creatorcontrib><creatorcontrib>Estrin, Dario A</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perissinotti, Laura L</au><au>Marti, Marcelo A</au><au>Doctorovich, Fabio</au><au>Luque, F. Javier</au><au>Estrin, Dario A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2008-09-16</date><risdate>2008</risdate><volume>47</volume><issue>37</issue><spage>9793</spage><epage>9802</epage><pages>9793-9802</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18717599</pmid><doi>10.1021/bi801104c</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2008-09, Vol.47 (37), p.9793-9802 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_69525356 |
source | MEDLINE; ACS Publications |
subjects | Anions - chemistry Anions - metabolism Binding Sites Catalysis Hemoglobins - chemistry Hemoglobins - metabolism Histidine - chemistry Histidine - metabolism Humans Ligands Models, Molecular Nitric Oxide - chemistry Nitric Oxide - metabolism Nitrite Reductases - chemistry Nitrite Reductases - metabolism Nitrites - chemistry Nitrites - metabolism Protein Conformation |
title | A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Microscopic%20Study%20of%20the%20Deoxyhemoglobin-Catalyzed%20Generation%20of%20Nitric%20Oxide%20from%20Nitrite%20Anion&rft.jtitle=Biochemistry%20(Easton)&rft.au=Perissinotti,%20Laura%20L&rft.date=2008-09-16&rft.volume=47&rft.issue=37&rft.spage=9793&rft.epage=9802&rft.pages=9793-9802&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi801104c&rft_dat=%3Cproquest_cross%3E69525356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69525356&rft_id=info:pmid/18717599&rfr_iscdi=true |