A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion

There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2008-09, Vol.47 (37), p.9793-9802
Hauptverfasser: Perissinotti, Laura L, Marti, Marcelo A, Doctorovich, Fabio, Luque, F. Javier, Estrin, Dario A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9802
container_issue 37
container_start_page 9793
container_title Biochemistry (Easton)
container_volume 47
creator Perissinotti, Laura L
Marti, Marcelo A
Doctorovich, Fabio
Luque, F. Javier
Estrin, Dario A
description There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.
doi_str_mv 10.1021/bi801104c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69525356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69525356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</originalsourceid><addsrcrecordid>eNpt0Etv3CAQB3AUtWo2aQ_9ApEvrZSDGzAGzHG1efSRR9VN1CPCeJyQ2GYLWNrNpy8rr5JLTmjgN4Pmj9Bngr8RXJCT2laYEFyaPTQjrMB5KSV7h2YYY54XkuN9dBDCYypLLMoPaJ9Ugggm5QzV8-zKGu-CcStrsmUcm03m2iw-QHYKbr15gN7dd662Q77QUXebZ2iyCxjA62jdsLXXNvrUe7O2DWStd_10EyGbD4l8RO9b3QX4tDsP0d352e3ie355c_FjMb_MdUlEzIXRNaek0RJoyTjXxrS0YrI0FS2akoIsoK4opabSLWkEpCWxwabgjZHCSHqIvk5zV979GyFE1dtgoOv0AG4MiktWMMp4gscT3O4dPLRq5W2v_UYRrLaBqpdAkz3aDR3rHppXuUswgXwCNkRYv7xr_6S4oIKp299Lxc5P_7C_v5bqZ_JfJq9NUI9u9EPK5I2P_wOn6owY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69525356</pqid></control><display><type>article</type><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><source>MEDLINE</source><source>ACS Publications</source><creator>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</creator><creatorcontrib>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</creatorcontrib><description>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi801104c</identifier><identifier>PMID: 18717599</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions - chemistry ; Anions - metabolism ; Binding Sites ; Catalysis ; Hemoglobins - chemistry ; Hemoglobins - metabolism ; Histidine - chemistry ; Histidine - metabolism ; Humans ; Ligands ; Models, Molecular ; Nitric Oxide - chemistry ; Nitric Oxide - metabolism ; Nitrite Reductases - chemistry ; Nitrite Reductases - metabolism ; Nitrites - chemistry ; Nitrites - metabolism ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 2008-09, Vol.47 (37), p.9793-9802</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</citedby><cites>FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi801104c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi801104c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18717599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perissinotti, Laura L</creatorcontrib><creatorcontrib>Marti, Marcelo A</creatorcontrib><creatorcontrib>Doctorovich, Fabio</creatorcontrib><creatorcontrib>Luque, F. Javier</creatorcontrib><creatorcontrib>Estrin, Dario A</creatorcontrib><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</description><subject>Anions - chemistry</subject><subject>Anions - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Hemoglobins - chemistry</subject><subject>Hemoglobins - metabolism</subject><subject>Histidine - chemistry</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Nitric Oxide - chemistry</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrite Reductases - chemistry</subject><subject>Nitrite Reductases - metabolism</subject><subject>Nitrites - chemistry</subject><subject>Nitrites - metabolism</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0Etv3CAQB3AUtWo2aQ_9ApEvrZSDGzAGzHG1efSRR9VN1CPCeJyQ2GYLWNrNpy8rr5JLTmjgN4Pmj9Bngr8RXJCT2laYEFyaPTQjrMB5KSV7h2YYY54XkuN9dBDCYypLLMoPaJ9Ugggm5QzV8-zKGu-CcStrsmUcm03m2iw-QHYKbr15gN7dd662Q77QUXebZ2iyCxjA62jdsLXXNvrUe7O2DWStd_10EyGbD4l8RO9b3QX4tDsP0d352e3ie355c_FjMb_MdUlEzIXRNaek0RJoyTjXxrS0YrI0FS2akoIsoK4opabSLWkEpCWxwabgjZHCSHqIvk5zV979GyFE1dtgoOv0AG4MiktWMMp4gscT3O4dPLRq5W2v_UYRrLaBqpdAkz3aDR3rHppXuUswgXwCNkRYv7xr_6S4oIKp299Lxc5P_7C_v5bqZ_JfJq9NUI9u9EPK5I2P_wOn6owY</recordid><startdate>20080916</startdate><enddate>20080916</enddate><creator>Perissinotti, Laura L</creator><creator>Marti, Marcelo A</creator><creator>Doctorovich, Fabio</creator><creator>Luque, F. Javier</creator><creator>Estrin, Dario A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080916</creationdate><title>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</title><author>Perissinotti, Laura L ; Marti, Marcelo A ; Doctorovich, Fabio ; Luque, F. Javier ; Estrin, Dario A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-7cab631da9e34566accf38594c832d43e92eb8333c8af1d7e4990c0c26dc97c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anions - chemistry</topic><topic>Anions - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Hemoglobins - chemistry</topic><topic>Hemoglobins - metabolism</topic><topic>Histidine - chemistry</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Nitric Oxide - chemistry</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrite Reductases - chemistry</topic><topic>Nitrite Reductases - metabolism</topic><topic>Nitrites - chemistry</topic><topic>Nitrites - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perissinotti, Laura L</creatorcontrib><creatorcontrib>Marti, Marcelo A</creatorcontrib><creatorcontrib>Doctorovich, Fabio</creatorcontrib><creatorcontrib>Luque, F. Javier</creatorcontrib><creatorcontrib>Estrin, Dario A</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perissinotti, Laura L</au><au>Marti, Marcelo A</au><au>Doctorovich, Fabio</au><au>Luque, F. Javier</au><au>Estrin, Dario A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2008-09-16</date><risdate>2008</risdate><volume>47</volume><issue>37</issue><spage>9793</spage><epage>9802</epage><pages>9793-9802</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>There is recent evidence suggesting that nitrite anion (NO2 −) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical−molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18717599</pmid><doi>10.1021/bi801104c</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2008-09, Vol.47 (37), p.9793-9802
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_69525356
source MEDLINE; ACS Publications
subjects Anions - chemistry
Anions - metabolism
Binding Sites
Catalysis
Hemoglobins - chemistry
Hemoglobins - metabolism
Histidine - chemistry
Histidine - metabolism
Humans
Ligands
Models, Molecular
Nitric Oxide - chemistry
Nitric Oxide - metabolism
Nitrite Reductases - chemistry
Nitrite Reductases - metabolism
Nitrites - chemistry
Nitrites - metabolism
Protein Conformation
title A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Microscopic%20Study%20of%20the%20Deoxyhemoglobin-Catalyzed%20Generation%20of%20Nitric%20Oxide%20from%20Nitrite%20Anion&rft.jtitle=Biochemistry%20(Easton)&rft.au=Perissinotti,%20Laura%20L&rft.date=2008-09-16&rft.volume=47&rft.issue=37&rft.spage=9793&rft.epage=9802&rft.pages=9793-9802&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi801104c&rft_dat=%3Cproquest_cross%3E69525356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69525356&rft_id=info:pmid/18717599&rfr_iscdi=true